Welcome to the Biophysics Program at York University. We are honoured that you have chosen to entrust us with your university education.

The Biophysics Program was constructed by the Department of Physics and Astronomy in collaboration with the Department of Biology. It is administered by the Department of Physics and Astronomy. The Program is different from any in Biology or Physics and Astronomy by virtue of its unique core requirements. Not only are there foundation courses in biology, chemistry, and physics, but enrichment comes through specialized courses in biology and physics considered to be particularly valuable to a biophysics education and unification comes through courses dedicated to biophysics.

I want your experience with us to be both stimulating and productive. This Handbook and our website (www.biophysics.yorku.ca) will help to guide your way. In case you need it, detailed information about offerings in biology is available at the website of the Biology Department, www.yorku.ca/ugbiol. The offerings of the Physics and Astronomy Department are described comprehensively at www.physics.yorku.ca. We are committed to teaching of the highest quality. You will find that this process is enriched by our vigorous research activity, which occurs in a dazzling array of fields.

Biophysics students have access to well-equipped laboratories throughout their undergraduate career. For example, a state-of-the-art laser physics laboratory serves students in third year, and a brand new biophysics laboratory supports studies in fourth year. As part of their university experience, our students also enjoy diverse opportunities for enrichment outside of the classroom. Besides the Biophysics Club, Biological Society, Pre-Med Society, Physics Society, and Astronomy Club, these include events sponsored by Norman Bethune College, the natural campus home to science students at York.

Please don't hesitate to contact me for information about specific program affairs or to arrange for an appointment. I can be reached by phone at 416-736-5249 or by email to chphas@yorku.ca.

Professor Marshall McCall, Director of Biophysics

<table>
<thead>
<tr>
<th>Biophysics Office</th>
<th>Emergency/Security Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 Petrie Science and Engineering Building</td>
<td></td>
</tr>
<tr>
<td>Hours: 10:00am – 5:00pm (closed 12:00pm – 1:00pm)</td>
<td></td>
</tr>
<tr>
<td>Tel: (416) 736-5249</td>
<td>Emergencies – on-campus</td>
</tr>
<tr>
<td>www.biophysics.yorku.ca</td>
<td>(Ambulance, Fire, Police)</td>
</tr>
<tr>
<td>M. McCall, Director</td>
<td>ext. 33333</td>
</tr>
<tr>
<td>M. Caplan, Administrative Assistant</td>
<td>(Not 911)</td>
</tr>
<tr>
<td>Assistant to the Director, Graduate Program</td>
<td></td>
</tr>
<tr>
<td>L. O'Brien, Undergraduate Program Secretary</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biology Departmental Office</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>108 Farquharson Science Building</td>
<td></td>
</tr>
<tr>
<td>Hours: 9:00am - 3:30pm (closed 12:00pm – 1:00pm)</td>
<td></td>
</tr>
<tr>
<td>Tel: (416)736-5311</td>
<td>Security Control Centre</td>
</tr>
<tr>
<td>www.biol.yorku.ca</td>
<td>Ext. 58000</td>
</tr>
<tr>
<td></td>
<td>Student Security Escort Service</td>
</tr>
<tr>
<td></td>
<td>416-736-5454</td>
</tr>
</tbody>
</table>
Important Notice

This Handbook is meant as a supplement to the Official York University Calendar (available at www.yorku.ca.) It describes in detail the options for studying Biophysics at York University, and contains detailed course descriptions. All general information and course references have been verified for accuracy, however, there may be inconsistencies or errors. If you become aware of any, please bring these to the attention of the Department of Physics & Astronomy. The Department reserves the right to make changes to the information contained in the Handbook without prior notice.

Students are responsible for familiarizing themselves with the specific requirements of the degree they seek.

Not every course listed in the Handbook will necessarily be offered in any academic year. York University reserves the right to limit the number of students who enroll in any program or course. While reasonable efforts will be made to offer courses and classes as required within programs, admission to a program does not guarantee admission to any given class or course.

If there is inconsistency between the general academic regulations and policies published in the Handbook and such regulations and policies as established by resolution of a Faculty or of the University Senate, the version of such material as it is established by the Faculty or the University Senate will prevail.

Front Cover Photo Credits

Top row, left: DNA translocating through a solid-state nanopore. Image by Biophysics Group at the Kavli Institute of NanoScience, Delft University of Technology

Top row, centre: A real-time enhanced vein image is projected onto a subject’s wrist in an effort to help in finding a vein for making injections. Photo by Herbert Zeman

Top row, right: Ankyrin, a molecule located in hair cell bundles in the inner ear, behaves like a soft spring, facilitating the conversion of mechanical energy into electrical signals when hairs are deflected by sound. Image by Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign

Centre left: A dye on the surface of water reveals a trail of vortices behind a water strider, yielding insights into how the insect propels itself. Image by David L. Hu, Brian Chan, and John W. M. Bush

Lower left: Autofluorescence of a common deer tick feasting on the ear of a golden hamster, as viewed by laser scanning confocal microscopy. Photo by Marna E. Ericson
TABLE OF CONTENTS

TABLE OF CONTENTS .. 3

SUMMARY OF SUPPORT SERVICES ... 5

TIMETABLE .. 7

INTRODUCTION .. 11

 - **What is Biophysics?** ... 11
 - **Why is Biophysics Useful?** .. 11
 - **Why Study Biophysics at York?** ... 12

CAREERS ... 12

ENTRANCE REQUIREMENTS .. 13

DEGREE REQUIREMENTS .. 13

 - **Program Core Requirements** ... 13
 - **Workload** .. 14

GRADING SYSTEM ... 15

STANDARDS ... 15

INTERNSHIPS ... 15

OPPORTUNITIES FOR RESEARCH ... 16

 - **Natural Sciences and Engineering Research Council of Canada (NSERC)** 16
 - **WorkStudy Program** ... 16
 - **Research at York (RAY) Program** ... 16
 - **Talk to Your Professors** .. 16

PROFESSIONAL CERTIFICATION .. 17

AWARDS ... 17

SUPPORT ... 18

 - **Computing @ York University** ... 18
 - **Passport York** ... 18
 - **Undergraduate Laboratory Information** .. 18
 - **Clubs and Associations** ... 18
 - **Bethune Writing Centre** .. 19
 - **Student Ombuds Service (SOS)** .. 19

EXCHANGE OPPORTUNITIES .. 20

RECOMMENDED SCHEDULE ... 21

 - **120 Credits B.Sc. Honours - Biophysics** ... 21

COURSE DESCRIPTIONS ... 26

Biophysics ... 26

 - **BPHS 2090 3.0 Current Topics in Biophysics** .. 26
 - **BPHS 3090 3.0 Biophysics I** .. 26
 - **BPHS 3900 0.0 Biophysics Internship Work Term** .. 27
 - **BPHS 4090 4.0 Biophysics II** .. 27

Biology ... 28

 - **BIOL 1000 3.0 Biology I - Cells, Molecular Biology and Genetics** ... 28
 - **BIOL 1001 3.0 Biology II - Evolution, Ecology, Biodiversity and Conservation Biology** 28
 - **BIOL 2020 3.0 Biochemistry** .. 29
 - **BIOL 2021 3.0 Cell Biology** .. 29
 - **BIOL 2040 3.0 Genetics** .. 30
 - **BIOL 2070 3.0 Research Methods in Cell and Molecular Biology** ... 30
 - **BIOL 3010 3.0 Advanced Biochemistry** .. 31
 - **BIOL 3051 3.0 Macromolecules of Biochemical Interest** .. 31
 - **BIOL 3060 4.0 Animal Physiology I** .. 32
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3110</td>
<td>MOLECULAR BIOLOGY I: NUCLEIC ACID METABOLISM</td>
<td>3.0</td>
</tr>
<tr>
<td>BIOL 3120</td>
<td>IMMUNOLOGY</td>
<td>3.0</td>
</tr>
<tr>
<td>BIOL 3130</td>
<td>MOLECULAR BIOLOGY II: REGULATION OF GENE EXPRESSION</td>
<td>3.0</td>
</tr>
<tr>
<td>BIOL 3150</td>
<td>MICROBIOLOGY</td>
<td>4.0</td>
</tr>
<tr>
<td>BIOL 3155</td>
<td>VIROLOGY</td>
<td>3.0</td>
</tr>
<tr>
<td>BIOL 4061</td>
<td>CELL & MOLECULAR BIOLOGY OF DEVELOPMENT</td>
<td>3.0</td>
</tr>
<tr>
<td>BIOL 4030</td>
<td>PROTEOMICS</td>
<td>3.0</td>
</tr>
<tr>
<td>BIOL 4141</td>
<td>CURRENT TOPICS AND METHODS IN CELL BIOLOGY</td>
<td>3.0</td>
</tr>
<tr>
<td>BIOL 4150</td>
<td>CELLULAR REGULATION</td>
<td>3.0</td>
</tr>
<tr>
<td>BIOL 4151</td>
<td>MEMBRANE TRANSPORT</td>
<td>3.0</td>
</tr>
<tr>
<td>BIOL 4160</td>
<td>PHOTOSYNTHESIS</td>
<td>3.0</td>
</tr>
<tr>
<td>CHEM 1000</td>
<td>CHEMICAL STRUCTURE</td>
<td>3.0</td>
</tr>
<tr>
<td>CHEM 1001</td>
<td>CHEMICAL DYNAMICS</td>
<td>3.0</td>
</tr>
<tr>
<td>CHEM 2020</td>
<td>INTRODUCTORY ORGANIC CHEMISTRY I</td>
<td>3.0</td>
</tr>
<tr>
<td>CHEM 2021</td>
<td>INTRODUCTORY ORGANIC CHEMISTRY II</td>
<td>3.0</td>
</tr>
<tr>
<td>CHEM 4092</td>
<td>X-RAY CRYSTALLOGRAPHY</td>
<td>4.0</td>
</tr>
<tr>
<td>CHEM 4093</td>
<td>BIOMATERIALS CHEMISTRY</td>
<td>4.0</td>
</tr>
<tr>
<td>CSE 1541</td>
<td>COMPUTING FOR THE PHYSICAL SCIENCES</td>
<td>4.0</td>
</tr>
<tr>
<td>MATH 1013</td>
<td>APPLIED CALCULUS I</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 1014</td>
<td>APPLIED CALCULUS II</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 1025</td>
<td>APPLIED LINEAR ALGEBRA</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 2015</td>
<td>APPLIED MULTIVARIATE AND VECTOR CALCULUS</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 2271</td>
<td>DIFFERENTIAL EQUATIONS FOR SCIENTISTS AND ENGINEERS</td>
<td>4.0</td>
</tr>
<tr>
<td>KINE 2031</td>
<td>HUMAN ANATOMY</td>
<td>3.0</td>
</tr>
<tr>
<td>KINE 4470</td>
<td>MUSCLE AND JOINT BIOMECHANICS</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 1010</td>
<td>PHYSICS</td>
<td>6.0</td>
</tr>
<tr>
<td>PHYS 2010</td>
<td>CLASSICAL MECHANICS</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 2020</td>
<td>ELECTRICITY AND MAGNETISM</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 2040</td>
<td>RELATIVITY AND MODERN PHYSICS</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 2060</td>
<td>OPTICS AND SPECTRA</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 2213</td>
<td>EXPERIMENTAL PHYSICS WITH DATA ANALYSIS</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 3010</td>
<td>CLASSICAL MECHANICS</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 3020</td>
<td>ELECTROMAGNETICS I</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 3030</td>
<td>STATISTICAL AND THERMAL PHYSICS</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 3040</td>
<td>MODERN PHYSICS</td>
<td>6.0</td>
</tr>
<tr>
<td>PHYS 3050</td>
<td>ELECTRONICS I</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 3090</td>
<td>METHODS IN THEORETICAL PHYSICS</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 3150</td>
<td>ELECTRONICS II</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 3220</td>
<td>EXPERIMENTS IN MODERN PHYSICS</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 3320</td>
<td>Microsystems Technology</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 4010</td>
<td>QUANTUM MECHANICS</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 4011</td>
<td>ATOMIC AND MOLECULAR PHYSICS</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 4020</td>
<td>ELECTROMAGNETICS II</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 4040</td>
<td>ELEMENTARY PARTICLE PHYSICS</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 4061</td>
<td>EXPERIMENTAL TECHNIQUES IN LASER PHYSICS</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 4050</td>
<td>SOLID STATE PHYSICS</td>
<td>3.0</td>
</tr>
<tr>
<td>PHYS 4120</td>
<td>GAS AND FLUID DYNAMICS</td>
<td>3.0</td>
</tr>
<tr>
<td>NOTES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY OF SUPPORT SERVICES

<table>
<thead>
<tr>
<th>Office or Contact</th>
<th>Primary Service</th>
</tr>
</thead>
</table>
| Bethune College Academic Advisor 416-736-2100 ext. 33940
nbcadadv@yorku.ca | General advising; study skills; college activities; upcoming events |
| Bethune Writing Centre
205 Bethune College
416-736-5164
http://bethune.yorku.ca/writing/ | Improving writing skills |
| Career Centre
202 McLaughlin College
416-736-5351
www.yorku.ca/careers
career@yorku.ca | Career counselling;
Learning skills development workshops;
Virtual resources |
| Centre for Student Community & Leadership Development (SC&LD)
S172 Ross Building
416-736-5144
www.yorku.ca/scld | Enrich student life by promoting education, awareness and growth;
celebrating diversity, encouraging collaboration and developing citizenship. |
| Counselling & Disability Services
N110 Bennett Centre for Student Services
416-736-5297
www.yorku.ca/cds | Personal counselors, crisis counseling, group development workshops, learning skills training, and support for learning disabilities and psychiatric disabilities |
| Faculty and Staff | Advice on courses and careers |
| Centre for Human Rights
S327 Ross Building
416-736-5682
www.yorku.ca/rights
rights@yorku.ca | Assists individuals and groups to address and resolve allegations of discrimination and harassment as defined by the Ontario Human Rights Code (Code). |
| Office of the Ombudsperson
1050 York Research Tower
www.yorku.ca/ombuds
ombuds@yorku.ca | Provides an impartial and confidential service to assist current members of York University who have been unable to resolve their concerns about University authorities’ application of York University policies, procedures and/or practices. |
| Office of the Registrar
Bennett Centre for Student Services
416-872-YORK
www.registrar.yorku.ca | Enrolment procedures;
Sessional dates and refund table
Petitions, permission to take a course at another university, transcripts, and most forms |
| Science Academic Services
352 Lumbers Building
416-736-5085
sciquest@yorku.ca | Faculty policies and procedures;
General advising, course selection/changes.
Counter hours: 10:00 am – 4:00 pm
Telephone hours: 8:30 am – 4:30 pm |
<table>
<thead>
<tr>
<th>Sexual Assault Survivor's Support Line</th>
<th>Student Financial Services</th>
<th>YFS Health Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>B449 Student Centre</td>
<td>N201 Bennett Centre for Student Services</td>
<td>336 Student Centre</td>
</tr>
</tbody>
</table>

Provide unbiased and non-judgmental peer support and referrals to survivors of sexual violence; Educational workshops

Scholarships, financial problems, OSAP information

Health plan sponsored by York Federation of Students
<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>DAY</th>
<th>TIME</th>
<th>ROOM</th>
<th>INSTRUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1010</td>
<td>Physics</td>
<td>MWF</td>
<td>12:30 – 13:30</td>
<td>CLH I</td>
<td>R. Koniuk</td>
</tr>
<tr>
<td></td>
<td>Tutorial</td>
<td>R</td>
<td>13:30 – 14:30</td>
<td>VH A</td>
<td></td>
</tr>
<tr>
<td>PHYS 1070</td>
<td>Fundamentals of Astronomy</td>
<td>TR</td>
<td>11:30 – 13:00</td>
<td>SC 302</td>
<td>M. De Robertis</td>
</tr>
<tr>
<td></td>
<td>Tutorial</td>
<td>W</td>
<td>14:30 – 15:30</td>
<td>SC 302</td>
<td></td>
</tr>
<tr>
<td>PHYS 1410</td>
<td>Physical Science</td>
<td>MWF</td>
<td>13:30 – 14:30</td>
<td>LAS B</td>
<td>A. Terekidi</td>
</tr>
<tr>
<td></td>
<td>Tutorial</td>
<td>W</td>
<td>12:30 – 13:30</td>
<td>CLH D</td>
<td></td>
</tr>
<tr>
<td>PHYS 1420</td>
<td>Physics with Applications to Life Sciences</td>
<td>MWF</td>
<td>12:30 – 13:30</td>
<td>CLH I</td>
<td>A. Matvienko/S. Jerzak</td>
</tr>
<tr>
<td></td>
<td>Tutorial</td>
<td>T</td>
<td>13:30 – 14:30</td>
<td>VH A</td>
<td></td>
</tr>
</tbody>
</table>

For PHYS 1010, PHYS 1410, PHYS 1420, and PHYS 1510 lab times, check the York University Lecture Schedule.

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>DAY</th>
<th>TIME</th>
<th>ROOM</th>
<th>INSTRUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1470</td>
<td>Highlights of Astronomy</td>
<td>TR</td>
<td>11:30 – 13:00</td>
<td>ACE 011</td>
<td>N. Bartel</td>
</tr>
<tr>
<td></td>
<td>Tutorial</td>
<td>W</td>
<td>14:30 – 15:30</td>
<td>SLH B</td>
<td></td>
</tr>
<tr>
<td>PHYS 1510</td>
<td>Introduction to Physics</td>
<td>TR</td>
<td>16:00 – 17:30</td>
<td>LAS C</td>
<td>C. Storry</td>
</tr>
<tr>
<td>PHYS 2010</td>
<td>Classical Mechanics</td>
<td>WF</td>
<td>9:00 – 10:30</td>
<td>SC 303</td>
<td>A. Kumarakrishnan</td>
</tr>
<tr>
<td></td>
<td>Tutorial</td>
<td>M</td>
<td>13:30 – 14:30</td>
<td>SC 303</td>
<td></td>
</tr>
<tr>
<td>PHYS 2020</td>
<td>Electricity & Magnetism</td>
<td>MWF</td>
<td>12:30 – 13:30</td>
<td>LSB 106</td>
<td>S. Menary</td>
</tr>
<tr>
<td></td>
<td>Tutorial</td>
<td>W</td>
<td>9:30-10:30</td>
<td>CLH H</td>
<td></td>
</tr>
<tr>
<td>PHYS 2030</td>
<td>Computational Methods for Physicists & Engineers</td>
<td>T</td>
<td>9:30 – 11:30</td>
<td>ACW 203</td>
<td>A. Matvienko</td>
</tr>
<tr>
<td></td>
<td>Tutorial</td>
<td>R</td>
<td>10:30 – 11:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2040</td>
<td>Relativity & Modern Physics</td>
<td>MWF</td>
<td>13:30 – 14:30</td>
<td>PSE 321</td>
<td>S. Menary</td>
</tr>
<tr>
<td></td>
<td>Tutorial</td>
<td>M</td>
<td>14:30 – 15:30</td>
<td>PSE 321</td>
<td></td>
</tr>
<tr>
<td>PHYS 2060</td>
<td>Optics & Spectra</td>
<td>TR</td>
<td>10:00 – 11:30</td>
<td>SC 303</td>
<td>C. Storry</td>
</tr>
<tr>
<td></td>
<td>Tutorial</td>
<td>W</td>
<td>12:30 – 13:30</td>
<td>SC 303</td>
<td></td>
</tr>
<tr>
<td>PHYS 2070</td>
<td>Galaxies & the Universe</td>
<td>TR</td>
<td>13:00 – 14:30</td>
<td>SC 302</td>
<td>M. McCall</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Experimental Electromagnetism</td>
<td>T,R</td>
<td>14:30 – 17:30</td>
<td>PSE 210</td>
<td>C. Storry</td>
</tr>
<tr>
<td></td>
<td>or W</td>
<td></td>
<td>15:30 – 18:30</td>
<td>PSE 210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or R</td>
<td></td>
<td>11:30 – 14:30</td>
<td>PSE 210</td>
<td></td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Experimental Physics</td>
<td>T</td>
<td>14:30 – 17:30</td>
<td>PSE 220</td>
<td>C. Storry</td>
</tr>
<tr>
<td></td>
<td>or R</td>
<td></td>
<td>11:30 – 14:30</td>
<td>PSE 220</td>
<td></td>
</tr>
<tr>
<td>PHYS 2213</td>
<td>Experimental Physics with Data Analysis</td>
<td>M</td>
<td>9:30 – 10:30</td>
<td>SC 218</td>
<td>C. Storry</td>
</tr>
<tr>
<td></td>
<td>Lab</td>
<td>T,R</td>
<td>14:30 – 17:30</td>
<td>PSE 210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or W</td>
<td></td>
<td>15:30 – 18:30</td>
<td>PSE 210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or R</td>
<td></td>
<td>11:30 – 2:30</td>
<td>PSE 210</td>
<td></td>
</tr>
<tr>
<td>COURSE</td>
<td>TITLE</td>
<td>DAY</td>
<td>TIME</td>
<td>ROOM</td>
<td>INSTRUCTOR</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------</td>
<td>-------</td>
<td>-----------------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>PHYS 3010</td>
<td>Classical Mechanics</td>
<td>MWF</td>
<td>11:30 – 12:30</td>
<td>PSE 321</td>
<td>W. van Wijngaarden</td>
</tr>
<tr>
<td>PHYS 3020</td>
<td>Electromagnetics I</td>
<td>MWF</td>
<td>11:30 – 12:30</td>
<td>PSE 321</td>
<td>W. Taylor</td>
</tr>
<tr>
<td>PHYS 3030</td>
<td>Statistical & Thermal Physics</td>
<td>TR</td>
<td>13:00 – 14:30</td>
<td>PSE 321</td>
<td>A. Terekidi</td>
</tr>
<tr>
<td>PHYS 3040</td>
<td>Modern Physics</td>
<td>MWF</td>
<td>10:30 – 11:30</td>
<td>BC 322</td>
<td>R. Lewis</td>
</tr>
<tr>
<td></td>
<td>Tutorial</td>
<td>W</td>
<td>13:30 – 14:30</td>
<td>BC 322</td>
<td></td>
</tr>
<tr>
<td>PHYS 3050</td>
<td>Electronics I</td>
<td>TR</td>
<td>11:30 – 13:00</td>
<td>PSE 321</td>
<td>J. Shan</td>
</tr>
<tr>
<td></td>
<td>Lab</td>
<td>T</td>
<td>16:00 – 19:00</td>
<td>PSE 120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab</td>
<td>R</td>
<td>15:30 – 18:30</td>
<td>PSE 120</td>
<td></td>
</tr>
<tr>
<td>PHYS 3070</td>
<td>Planets & Planetary Systems</td>
<td>T</td>
<td>13:00 – 14:30</td>
<td>SC 219</td>
<td>J. Moores</td>
</tr>
<tr>
<td></td>
<td>Lab</td>
<td>R</td>
<td>13:00 – 14:30</td>
<td>SC 219</td>
<td></td>
</tr>
<tr>
<td>PHYS 3080</td>
<td>Atmospheric Radiation & Thermodynamics</td>
<td>MWF</td>
<td>9:30 – 10:30</td>
<td>PSE 321</td>
<td>J. Whiteway</td>
</tr>
<tr>
<td>PHYS 3090</td>
<td>Methods in Theoretical Physics</td>
<td>MWF</td>
<td>9:30 – 10:30</td>
<td>PSE 321</td>
<td>R. Koniuk</td>
</tr>
<tr>
<td>PHYS 3150</td>
<td>Electronics II</td>
<td>TR</td>
<td>11:30 – 13:00</td>
<td>PSE 321</td>
<td>G. Vukovich</td>
</tr>
<tr>
<td></td>
<td>Lab</td>
<td>T or R</td>
<td>15:30 – 18:30</td>
<td>PSE 120</td>
<td></td>
</tr>
<tr>
<td>PHYS 3220</td>
<td>Experiments in Modern Physics</td>
<td>R</td>
<td>14:30 – 15:30</td>
<td>CB 129</td>
<td>W. Taylor</td>
</tr>
<tr>
<td></td>
<td>Lab</td>
<td>MTWRF</td>
<td>10:00 – 16:00</td>
<td>PSE 126</td>
<td></td>
</tr>
<tr>
<td>PHYS 3250</td>
<td>Introduction to Space Communications</td>
<td>MWF</td>
<td>12:30 – 13:30</td>
<td>CB 120</td>
<td>N. Bartel</td>
</tr>
<tr>
<td>PHYS 3280</td>
<td>Physics of the Space Environment</td>
<td>MWF</td>
<td>13:30 – 14:30</td>
<td>PSE 321</td>
<td>R. Jagpal</td>
</tr>
<tr>
<td>PHYS 3320</td>
<td>Microsystems Technology</td>
<td>MW</td>
<td>11:30 – 13:00</td>
<td>SC 228</td>
<td>R. Lee</td>
</tr>
<tr>
<td>PHYS 3330</td>
<td>Space Engineering Materials</td>
<td>WF</td>
<td>15:30 – 17:00</td>
<td>BC 225</td>
<td>TBA</td>
</tr>
<tr>
<td>PHYS 3900</td>
<td>Physics Internship Work Term</td>
<td>By permission only</td>
<td></td>
<td>By permission only</td>
<td></td>
</tr>
<tr>
<td>PHYS 4010</td>
<td>Quantum Mechanics</td>
<td>MF</td>
<td>12:30 – 13:30</td>
<td>BC 230</td>
<td>A. Terekidi</td>
</tr>
<tr>
<td></td>
<td>Lab</td>
<td>W</td>
<td>10:30 – 11:30</td>
<td>SC 220</td>
<td></td>
</tr>
<tr>
<td>PHYS 4011</td>
<td>Atomic and Molecular Physics</td>
<td>MWF</td>
<td>15:30 – 16:30</td>
<td>BC 323</td>
<td>E. Hessels</td>
</tr>
<tr>
<td>PHYS 4020</td>
<td>Electromagnetics II</td>
<td>MWF</td>
<td>9:30 – 10:30</td>
<td>BC 323</td>
<td>E. Hessels</td>
</tr>
<tr>
<td>COURSE</td>
<td>TITLE</td>
<td>DAY</td>
<td>TIME</td>
<td>ROOM</td>
<td>INSTRUCTOR</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-----</td>
<td>-----------------</td>
<td>-------</td>
<td>--------------------</td>
</tr>
<tr>
<td>PHYS 4040 3.0 M W</td>
<td>Elementary Particle Physics</td>
<td>MWF</td>
<td>11:30 – 12:30</td>
<td>CB 122</td>
<td>R. Lewis</td>
</tr>
<tr>
<td>PHYS 4050 3.0 M W</td>
<td>Solid State Physics</td>
<td>MWF</td>
<td>10:30 – 11:30</td>
<td>BC 214</td>
<td>W. van Wijngaarden</td>
</tr>
<tr>
<td>PHYS 4060 3.0 A F</td>
<td>Time Series & Spectral Analysis</td>
<td>M W</td>
<td>14:00 – 15:30</td>
<td>SC 203</td>
<td>C. Haas</td>
</tr>
<tr>
<td>PHYS 4062 3.0 A F</td>
<td>Atom Trapping</td>
<td>R</td>
<td>14:30 – 15:30</td>
<td>BC 228</td>
<td>A. Kumarakrishnan</td>
</tr>
<tr>
<td>PHYS 4070 3.0 M W</td>
<td>Stars and Nebulae</td>
<td>TR</td>
<td>10:00 – 11:30</td>
<td>CC 208</td>
<td>P. Hall</td>
</tr>
<tr>
<td>PHYS 4110 3.0 M W</td>
<td>Dynamics of Space Vehicles</td>
<td>TR</td>
<td>11:30 – 13:00</td>
<td>CB 120</td>
<td>J. Shan</td>
</tr>
<tr>
<td>PHYS 4120 3.0 A F</td>
<td>Gas and Fluid Dynamics</td>
<td>TR</td>
<td>11:30 – 13:00</td>
<td>CB 120</td>
<td>J. Moores</td>
</tr>
<tr>
<td>PHYS 4210 3.0 A F</td>
<td>Advanced Experimental Physics I</td>
<td>M</td>
<td>10:30 – 11:30</td>
<td>BC 228</td>
<td>M. George</td>
</tr>
<tr>
<td>PHYS 4211 3.0 M W</td>
<td>Advanced Experimental Physics II</td>
<td>M</td>
<td>14:30 – 15:30</td>
<td>BC 225</td>
<td>M. George</td>
</tr>
<tr>
<td>PHYS 4270 4.0 A Y</td>
<td>Astronomical Techniques</td>
<td></td>
<td>NOT OFFERED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 4310 3.0 A F</td>
<td>Physics or Astronomy Project</td>
<td></td>
<td>By permission only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 4310 3.0 M W</td>
<td>Physics or Astronomy Project</td>
<td></td>
<td>By permission only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 4330 3.0 M W</td>
<td>Radio Science and Techniques for Space Exploration</td>
<td>MWF</td>
<td>12:30 – 13:30</td>
<td>SC 220</td>
<td>N. Bartel</td>
</tr>
<tr>
<td>PHYS 4350 6.0 A Y</td>
<td>Space Hardware</td>
<td>M</td>
<td>10:00 – 12:30</td>
<td>PSE 315</td>
<td>B. Quine</td>
</tr>
<tr>
<td>PHYS 4360 3.0 A F</td>
<td>Payload Design</td>
<td>TR</td>
<td>14:30 – 16:00</td>
<td>PSE 315</td>
<td>J. Shan</td>
</tr>
<tr>
<td>PHYS 4361 3.0 M W</td>
<td>Space Mission Design</td>
<td>MW</td>
<td>9:30 – 11:00</td>
<td>SC 223</td>
<td>M. Daly</td>
</tr>
<tr>
<td>PHYS 4410 3.0 M W</td>
<td>Space Geodynamics</td>
<td></td>
<td>NOT OFFERED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 4550 3.0 A F</td>
<td>Control Systems</td>
<td>TR</td>
<td>10:00 – 11:30</td>
<td>PSE 315</td>
<td>G. Vukovich</td>
</tr>
<tr>
<td>COURSE</td>
<td>TITLE</td>
<td>DAY</td>
<td>TIME</td>
<td>ROOM</td>
<td>INSTRUCTOR</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td>-----</td>
<td>----------------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>BPHS 2090 3.0 A F</td>
<td>Current Topics in Biophysics</td>
<td>TR</td>
<td>11:30 – 13:00</td>
<td>BC 202</td>
<td>S. Jerzak</td>
</tr>
<tr>
<td>BPHS 3090 3.0 M W</td>
<td>Biophysics I</td>
<td>MWF</td>
<td>9:30 – 10:30</td>
<td>BC 230</td>
<td>C. Bergevin</td>
</tr>
<tr>
<td>BPHS 3900 0.0 A F</td>
<td>Biophysics Internship Work Term</td>
<td></td>
<td></td>
<td></td>
<td>By Permission Only</td>
</tr>
<tr>
<td>BPHS 3900 0.0 M W</td>
<td>Biophysics Internship Work Term</td>
<td></td>
<td></td>
<td></td>
<td>By Permission Only</td>
</tr>
<tr>
<td>BPHS 4090 4.0 A F</td>
<td>Biophysics II</td>
<td>TR</td>
<td>10:00 – 11:30</td>
<td>BC 225</td>
<td>C. Bergevin</td>
</tr>
<tr>
<td></td>
<td>Lab</td>
<td>W</td>
<td>13:00 – 16:00</td>
<td>PSE 108</td>
<td></td>
</tr>
</tbody>
</table>

Building Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Building</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACW</td>
<td>Accolade West</td>
</tr>
<tr>
<td>BC</td>
<td>Bethune College</td>
</tr>
<tr>
<td>CB</td>
<td>Chemistry Building</td>
</tr>
<tr>
<td>CC</td>
<td>Calumet College</td>
</tr>
<tr>
<td>CLH</td>
<td>Curtis Lecture Halls</td>
</tr>
<tr>
<td>LAS</td>
<td>Lassonde Building</td>
</tr>
<tr>
<td>PSE</td>
<td>Petrie Science & Engineering</td>
</tr>
<tr>
<td>SC</td>
<td>Stong College</td>
</tr>
<tr>
<td>SLH</td>
<td>Stedman Lecture Hall</td>
</tr>
<tr>
<td>VH</td>
<td>Vari Hall</td>
</tr>
</tbody>
</table>
What Is Biophysics?

Biophysics is an interdisciplinary frontier of science in which the principles and techniques of physics are applied to study living things and how they work. To a great extent, biophysics became established as a bonafide field of science after the discovery of X-rays in 1895, which heralded the beginnings of nuclear medicine.

One of the major breakthroughs in biophysics came from work on radar, which evolved from much earlier developments in pure and applied physics. The electrical circuits which were developed were used to show that the flow of sodium and potassium across cell membranes triggers neurons to fire. More recently, biophysicists have brought expertise in laser physics to map cells in three dimensions, reveal bacteria in drinking water, and even cure bad breath.

Biophysicists are also involved in applying their knowledge of fundamental physics to develop and implement new techniques for analyzing organisms. Some of the most noteworthy are EM (Electron Microscopy), CAT (Computer-Aided Tomography), MRI (Magnetic Resonance Imaging), NMR (Nuclear Magnetic Resonance spectroscopy), PET (Positron Emission Tomography) and X-ray crystallography. Biophysicists may even facilitate the application of biological knowledge to problems in physics. For example, the DNA of salmon has been found to improve the performance of light emitting diodes, and studies of the shells of beetles are leading to whiter whites and micro-mirrors.

Why is Biophysics Useful?

Interest in biophysics is exploding as a result of a realization that biological phenomena cannot be understood fully without physical insight. Students undertaking studies in biophysics can have the satisfaction of becoming players in a real frontier of modern science with a vast potential for breakthroughs. What makes biophysics especially exciting is the diversity of applications.

At a macroscopic level, biophysicists are exploring how organisms develop and how they see, hear, taste, feel, and think. Also, they are examining activities such as movement, breathing, muscle contractions, and the operation of bones. Research along these avenues can have significant technological spinoffs, such as the development of better robots. At a microscopic level, biophysicists are studying how cells move and divide, how they harness and process energy, and how they react to external stimuli. Particularly interesting subjects include how a muscle cell converts the chemical energy of ATP into movement, how DNA can exactly replicate itself during cell division, and whether the shapes of nucleotides define a “second genetic code”. Spinoffs include the development of nanotechnology founded upon the unique mechanical and electrical properties of DNA. To facilitate their explorations, biophysicists are at the cutting edge of research aimed at developing new or improved techniques of imaging, diagnosis, and analysis.
Why Study Biophysics at York?

York University is one of only a few institutions which offer a comprehensive four-year undergraduate degree program in biophysics. The program is special because it is strong in both physics and biology, focused by courses dedicated to biophysics, and sufficiently broad in scope to expose students to knowledge and techniques applicable not only to humans but to all of the kingdoms of life.

Students acquire a theoretical and practical understanding of biology, physics and biophysics through both lecture-based and lab-based courses. Practical skills in mathematics and computing are developed by promoting applications to physical and biophysical problems. Powers of lateral thinking are enhanced through the mixing of physics and biology courses and the unification of material through biophysics courses. In the end, students learn to recognize biological problems which could benefit from physical insights as well as physical principles which might productively confront biological challenges. Most important, students gain the ability to think critically and to analyze and solve complex problems, talents which are in high demand in both the private and public sectors.

CAREERS

Because of the breadth of their training, biophysicists have a wide range of career options. Job opportunities exist in both the private and public sectors, especially in the realms of medical science, forensic science, radiation science, biotechnology, environmental science, agricultural science, and computational biology. For example, there is demand for biophysicists in many large and small biomedical companies (a famous example is QLT, Inc., pioneers in photodynamic therapy) and in public institutions such as the National Research Council, Ontario Cancer Institute, research units in hospitals and public policy agencies. Biophysicists are expected to be in high demand in the environmental sector, too, because so many of the problems faced by life on Earth today have a physical root.

Many biophysics students may want to go on to more advanced programs of study before embarking on a career. For students whose ambition is to lead research, York’s B.Sc. program is a logical starting point for graduate studies leading to a doctoral degree in biophysics. Biophysics is a highly regarded path towards a career in medicine. It is also a possible path to a career in optometry or dentistry. The degree provides outstanding preparation for careers in radiation therapy and other applied health sciences, such as offered by the Michener Institute.

Remember, our Office is always here to help! If you require further advice, please feel free to contact our Office to arrange an appointment to discuss your situation further.
To be eligible to major in Biophysics at York starting in first year, it is necessary to have passed Grade 12 courses or their equivalents in English, Biology, Physics, and Mathematics. Specifically, applicants from high schools in Ontario must have passed

- ENG4U - 12U English (York University requirement)
- SPH4U - 12U Physics
- SBI4U - 12U Biology
- MHF4U - 12U Advanced Functions
- MCV4U - 12U Calculus and Vectors

SCH4U - 12U Chemistry is recommended, but not required for admissions. Those students lacking Grade 12U Chemistry will be required to take an equivalent course at York prior to enrolling in University level chemistry courses.

Applicants admitted to York who lack any of these requirements cannot become Biophysics majors until such time as the deficiencies are corrected. York University offers bridging courses (high school equivalents) to help such students meet the entry requirements of the program. Students who are missing any prerequisites should enroll in an equivalent 1500-level course, such as BIOL 1500 3.0, CHEM 1500 4.0, and/or PHYS 1510 4.0 before proceeding further.

DEGREE REQUIREMENTS

Program Core Requirements

The Biophysics Program is an interdisciplinary Specialized Honours program requiring coursework and practical experience in physics, biology, chemistry, mathematics and computer science. The focus of the program is on applying laws and methods of physics to understand biological processes. (The suggested rate of progress is detailed later in this Handbook.)

1) The program core:

- SC/BIOI 1000 3.00 and SC/BIOI 1001 3.00 (or SC/BIOI 1010 6.00); SC/BIOI 2020 3.00; SC/BIOI 2021 3.00; SC/BIOI 2040 3.00; SC/BIOI 2070 3.00;
- SC/BPHS 2090 3.00; SC/BPHS 3090 3.00; SC/BPHS 4090 4.00;
- SC/CHEM 1000 3.00; SC/CHEM 1001 3.00;
- SC/MATH 1025 3.00; SC/MATH 1028 3.00; SC/MATH 2271 3.00;
- SC/PHYS 1010 6.00; SC/PHYS 1040 3.00; SC/PHYS 1050 3.00; SC/PHYS 1060 3.00; SC/PHYS 2213 3.00; SC/PHYS 3030 3.00; SC/PHYS 3040 6.00; SC/PHYS 4061 3.00.

2) Non-Science requirement: 12 credits

The non-science requirement provides a broad perspective on current scholarship and the diversity of human experience. These courses are also expected to enhance students' critical skills in reading, writing and thinking, and contribute to their preparation for post-university life. All BSc degree candidates must complete a minimum of 12 credits from two different areas of study, including at least three credits from each area, subject to the restrictions noted by the Faculty. Visit the Faculty's website for details, particularly with respect to eligible courses:

http://www.science.yorku.ca/Calendar/General-Education/
3) Additional required courses:

- SC/MATH 1013 3.00 and SC/MATH 1014 3.00;
- SC/CSE 1541 3.00
- at least nine credits from SC/PHYS 2040 3.00, SC/PHYS 3020 3.00, SC/PHYS 3050 3.00, SC/PHYS 3090 3.00, SC/PHYS 3150 3.00, SC/PHYS 3220 3.00, SC/PHYS 3320 3.00, SC/PHYS 4010 3.00, SC/PHYS 4011 3.00, SC/PHYS 4020 3.00, SC/PHYS 4040 3.00, SC/PHYS 4050 3.00, SC/PHYS 4120 3.00;
- at least 15 credits from: SC/BIOL 3010 3.00, SC/BIOL 3051 3.00, SC/BIOL 3060 4.00, SC/BIOL 3110 3.00, SC/BIOL 3120 3.00, SC/BIOL 3130 3.00, SC/BIOL 3150 3.00/SC/BIOL 3150 4.00, SC/BIOL 3155 3.00, SC/BIOL 4030 3.00, SC/BIOL 4061 3.00, SC/BIOL 4141 3.00, SC/BIOL 4150 3.00, SC/BIOL 4151 3.00, SC/BIOL 4160 3.00, SC/CHEM 2020 3.00, SC/CHEM 2021 3.00, SC/CHEM 4092 3.00, SC/CHEM 4093 3.00, HH/KINE 2031 3.00, HH/KINE 4470 3.00.

4) Upper level requirements:

At least 42 credits at the 3000 or higher level, including at least 12 major credits at the 4000 level.

5) Additional elective credits, as required for an overall total of at least 120 credits.

Workload

The Biophysics Program is a 4-year path of study which leads to a B.Sc. (Honours) in Biophysics. A normal workload constitutes 5 full courses (30 credits) per year. A single credit is equated with one hour of classroom teaching per week over 13 weeks, or 3 laboratory hours per week for 13 weeks. A full course counts as 6 credits, and is typically three lecture hours per week for 26 weeks and may include a laboratory. The term “4-year” degree refers to a 120-credit program. Lectures are scheduled typically as 1-hour (50 minute) classes on Mondays, Wednesdays, and Fridays, or as 1.5-hour (80 minute) classes on Tuesdays and Thursdays. Traditionally, Departments offer few courses over the summer. Those courses offered tend to cater to students in their early years of study.

There has been some change in recent years as to the meaning of full-time attendance at a University. The regrettable increases in tuition fees have resulted in students engaging in part-time work while studying. For Biophysics students, this represents a daunting task given how demanding the program offerings are. Students who are forced into this situation should be prepared to extend their studies over an additional year, and should consult with members of the Department who act as advisors in order to structure their course load appropriately (to satisfy prerequisites and corequisites for courses.)
To help understand the grading system and calculation of averages, grades and grade-point equivalencies are listed below. The percentage equivalencies used within the Faculty of Science and Engineering are also listed.

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Grade-Point Value</th>
<th>Grade-Point Average Range</th>
<th>Percentage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>9</td>
<td>8.5+</td>
<td>90 - 100</td>
</tr>
<tr>
<td>A</td>
<td>8</td>
<td>7.5 – 8.4</td>
<td>80 - 89</td>
</tr>
<tr>
<td>B+</td>
<td>7</td>
<td>6.5 – 7.4</td>
<td>75 – 79</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>5.5 – 6.4</td>
<td>70 – 74</td>
</tr>
<tr>
<td>C+</td>
<td>5</td>
<td>4.5 – 5.4</td>
<td>65 – 69</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>3.5 – 4.4</td>
<td>60 – 64</td>
</tr>
<tr>
<td>D+</td>
<td>3</td>
<td>2.5 – 3.4</td>
<td>55 – 59</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>1.5 – 2.4</td>
<td>50 – 54</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>0.1 – 1.4</td>
<td>40 – 49</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0 - 39</td>
</tr>
</tbody>
</table>

Repeated Courses: Check the Registrar’s Office website for detailed information. (http://calendars.registrar.yorku.ca/2012-2013/faculty_rules/SC/index.htm.)

STANDARDS

To remain in the Biophysics Program, students must achieve a minimum credit-weighted grade point average each year. This average increases per credits completed as outlined below:

Honours Progression Academic Standards – Overall GPA Requirements

- Fewer than 24 credits: 4.0
- Fewer than 54 credits: 4.25
- Fewer than 84 credits: 4.8
- At least 84 credits: 5.0

To graduate in an Honours program requires successful completion of all Faculty requirements and departmental required courses, and a minimum cumulative credit-weighted grade point average of 5.00 (C+) over all courses completed.

INTERNSHIPS

Students in the Biophysics Program now have an opportunity to engage in workplace internships for up to four semesters (16 months) following their third year of study. In combination with advice from the Program, the Career Centre of York University coordinates internships through its Technology Internship Program (TIP), providing students with training and support in seeking internship positions and also overseeing their administration. Employers are motivated to hire students in the internship program because involvement in experiential education entitles them to tax benefits. Each work term completed successfully is noted officially by an entry on the student's transcript. Eligible students must be enrolled full-time in the Honours program prior to beginning their internship, have successfully completed at least 9 BPHS or PHYS credits at the 3000 level or higher, including SC/BPHS 3090 3.0, have an overall cumulative grade point average of at least 5.0 in BPHS, BIOL, and PHYS course overall, must have at least 9 credits remaining to graduate, and have not been absent for more than two consecutive years as a full-time student from their Honours degree studies. Students interested in participating in the internship program should identify themselves to the Biophysics Program and to TIP at least one semester before the semester in which they would like to begin working.
There are a variety of opportunities for undergraduate students in the Biophysics Program to gain direct experience in research.

Natural Sciences and Engineering Research Council of Canada (NSERC)

Annually, NSERC offers Student Research Awards to foster involvement of superior undergraduates in scientific research. First, Faculty develop research projects for which they would like student assistance. Students who apply for a Student Research Award identify those projects of particular interest to them. After receiving an award, a student will have the opportunity to work for the duration of the summer term (May through August) on one of the selected projects. Students are paid a salary which is a combination of the award and funding from the supervisor. Information about Student Research Awards becomes available in each Department in January each year.

WorkStudy Program

York University manages a program which offers a subsidy to help faculty pay for research assistance. It is called the WorkStudy Program. For example, this program assists astronomy students who are interested in becoming involved in research activities undertaken with the York Observatories. There is no formal procedure for identifying research opportunities. Some projects are advertised online, but there may be many which are not. Students who would like to get involved in research are encouraged to talk to faculty with overlapping interests about possible opportunities for work. Many professors have projects for which they need assistance and, if an appropriate student can be found, will take the necessary steps to apply for funding through York's WorkStudy Program. Applications for Fall/Winter are due in July, and for Summer in March. For available WorkStudy positions, visit http://www.yorku.ca/careers/oncampus_jobs/.

Research at York (RAY) Program

The Research at York (RAY) Program was created to enhance both the research culture of the University and the Undergraduate student academic experience. Through the RAY Program, eligible Undergraduate students will have the opportunity to participate in research projects with Faculty members and/or fellow students, while receiving compensation at a competitive rate. Visit http://sfs.yorku.ca/employment//ray/ for further information.

Talk to your Professors

Many Faculty are undertaking research which could benefit from student involvement, but often don't advertise this fact. As is the case for the WorkStudy program, a simple expression of interest in research may actually lead to an opportunity for participation. Talk to your professors and see what they have to say. Some professors may be limited financially, but others may have the capacity to pay you. Volunteering might also be fruitful, although professors do have limits to the amount of time they can spend supervising.
The Canadian Association of Physicists (CAP) has instituted a professional certification process (P.Phys.) which is intended to help to raise the perceived status of a physics degree (versus an engineering degree). Full details about certification are available at https://www.cap.ca/cert/default.asp

At present, the CAP has close to 300 certified members who use the title P.Phys. To get a P.Phys., you have to:

- be of good character
- meet the education standards established by the CAP (meaning you need an Honours B.Sc. in a physics program)
- have 3 years of physics-related work experience
- be a CAP member
- be 18 or older
- pass the Professional Practice Examination (PPE)

Annually, the Department of Physics and Astronomy offers third and fourth-year undergraduate students an opportunity to write the Professional Practice Examination. A sample is on-line at www.cap.ca. Except for CAP membership, you don't have to satisfy the other requirements for certification to write the exam. The PPE does not test technical knowledge but, rather, focuses on ability to communicate as well as to understand, and show an appreciation for, ethical issues. Exams are conveyed to the CAP's Certification Committee, which will keep results on file. In this way, you will be able to apply for certification as soon as you meet the experience criteria (https://www.cap.ca).

AWARDS

Various awards are administered by the Department of Physics and Astronomy. Recipients are rewarded financially and with a record on the transcript.

- The Embleton Award is awarded to one or two female students of Physics, Biophysics, Engineering Physics, Astronomy, and/or Chemistry (excluding Biochemistry) who have completed 84 credits towards an Honours BSc or BASc and have earned a GPA of 6.0 (B) or better on the most recently earned 30 credits. To be eligible, applicants must be Canadian citizens, permanent residents or protected persons or have Protected Person status, be Ontario residents and demonstrate financial need.

- The Denise Hobbins Prize is given for outstanding achievement in PHYS 1010 6.0 Physics to commemorate Denise Hobbins, who was a physics undergraduate at York and went to Cornell University for her PhD studies in Physics. She was killed in a hit-and-run car accident shortly before defending her thesis. The prize has been set up by her family and friends.

- The W.J. Megaw Prize in Experimental Physics is given for outstanding achievement in PHYS 3220 3.0 to commemorate the late Jim Megaw, who was Chairman of the Department of Physics and Astronomy for ten years.

- The Emeritus Professors’ Award is given to a student (Canadian citizen or permanent resident and Ontario resident) entering the final year of study for an Honours degree with the department, who has achieved an excellent academic record over their entire university career while maintaining a course load of at least 24 credits/year and who has demonstrated financial need.
The Charlene Anne Heisler Prize is awarded to a student with at least a B+ average in two or more (science) astronomy courses, and has shown an interest in communicating science while at York University.

More information about the prizes and past winners can be found under the Undergraduate link on our website http://www.physics.yorku.ca/undergrad/deptawards.html or the university website http://sfs.yorku.ca/services/award_search/.

SUPPORT

Computing @ York University

York offers a wide array of computing resources and services for students. The website www.yorku.ca/computing/students provides a guide to finding and using services that are available to all York students. Additional services and resources are also frequently provided within specific faculties or programs.

Passport York

Passport York is York’s primary method of online authentication. You must sign up for your Passport York username and password so that you can log into York’s online services for students. Passport York determines which services you are able to access. If you are a new student and have not signed up for Passport York, the first time you go to an application that requires the Passport York login, click on any button that says “New Student Sign Up!” The next screen will ask you to login with your student number and date of birth. Follow the steps as they are listed. You will be asked to give yourself a Passport York username and password. Don’t forget your password.

Undergraduate Laboratory Information

It is extremely important and required that all students who take part in science laboratories become safety conscious. Specific safety instructions and rules will appear in individual lab manuals. As certain special precautions may be necessary for particular experiments, it is essential that students always pay special attention to lab lectures so that they can observe the instructions given by their demonstrator and/or laboratory supervisor/course director.

Clubs and Associations

Please see the following websites to learn about our clubs:

- Biophysics Club www.yorku.ca/bphsclub
- Astronomy Club www.yorku.ca/yuac
- Biological Society www.yorku.ca/yubs
- Physics Society www.yorku.ca/physics
- Pre-Medical Society https://yorku.collegiatelink.net/organization/premedicalsociety
Bethune Writing Centre

The Bethune Writing Centre offers free one-on-one or small group instruction in academic writing, to students affiliated with Bethune College, to undergrads in the Faculty of Science and Engineering, and to undergraduate students in the Faculty of Environmental Studies.

The Bethune Writing Centre can help with the following (and much more):
- Writing a thesis statement
- How to construct an argument for a critical essay or report
- Planning and organizing the structure of an essay or scientific report
- Drafts and proofreading
- Active reading skills
- Effective note-taking and reviewing of notes, using Cornell note-taking style or mind mapping
- Effective exam revision strategies

Appointments must be made in advance. To book an appointment: Call the Bethune Academic Secretary, (416) 736-2100 ext. 22035, or drop by the Bethune College Master's Office (205 Bethune-closed 1-2 pm.) Web address: http://bethune.yorku.ca/writing/.

Student Ombuds Service (SOS)

The Student Ombuds Services (SOS) is an academic student organization in Bethune College that provides peer advising service for York students. It plays a crucial role in the transitional process of students of any year. The SOS particularly caters to the special needs of first year students coming out of high school, who need guidance in getting to know the University from an academic point of view.

Furthermore, the SOS holds seminars and presentations for the student body to give them insight and information about the careers they are thinking about. These information sessions prove to be a great success because they prepare students for what they are going to face and what they need to work on.

The SOS office is a great resource center in itself, housing information on many careers that students may choose after their Undergraduate degree. It allows for an easy going environment with peer facilitators so students may drop in with any questions or concerns. Information on prerequisites and the admission process is readily available for various professions. In addition, referrals to campus services and people such as tutors for courses are readily available.

The SOS Office is located in 208 Bethune College. Office hours are Monday-Friday from 10:00 am – 4:00 pm. The SOS Office can also be reached by calling 416-736-5383 or by e-mailing sos@yorku.ca or http://sos.info.yorku.ca/.
EXCHANGE OPPORTUNITIES

York University has established exchange agreements with many universities around the world. Through such agreements, students gain opportunities to add an international component to their York degree. To participate, students apply during their second year to spend one or two terms of their third year at one of York's partner universities. Exchange opportunities exist in Asia, Australia, Europe, and South America. Especially, students should consider looking into the Baden-Wurttemburg Program, which allows students to study at the famous University of Heidelberg in Germany. Other partners which have programs which overlap ours include:

- Dublin City University (Ireland)
- Flinders University (Australia)
- University of Western Sydney (Australia)
- Monash University (Australia)
- Keele University (England)
- University of London -- Royal Holloway (England)
- University of York (England)
- Helsinki University of Technology (Finland)
- University of Helsinki (Finland)
- Copenhagen University (Denmark)
- Stockholm University (Sweden)
- Uppsala University (Sweden)

The list is continually growing, so students are encouraged to contact York International at (416) 736-5177 or http://international.yorku.ca for the latest options, as well as information session dates and application forms.
The tables below give the required courses and suggested rate of progress for courses for the Biophysics Program. They are constructed taking into account both timetabling and prerequisites. Although the course requirements are fixed, alternative schedules may be considered. However, students considering alternatives must be cognizant of the possibility of course conflicts, and take care to avoid them. Students must also plan scheduling of options in such a way that prerequisites are satisfied.

Students considering a career in Medicine should take Organic Chemistry (CHEM 2020 3.0 and CHEM 2021 3.0) as one of their options, as many Medical Schools require this course for admission (not required for Ontario Medical Schools.)

Students considering a career in Optometry (via the University of Waterloo) should take courses in English and Ethics as part of their general education credits, and should add courses in Psychology and Physiology.

Students considering a career in Applied Health Sciences (e.g., via the Michener Institute) should take Human Anatomy (KINE 2031 3.0) and should add a course in Physiology.

Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
<th>Prerequisites</th>
<th>Corequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1000 3.0</td>
<td>F</td>
<td>12U Biology or BIOL 1500 3.0; 12U Chemistry or CHEM 1500 4.0</td>
<td></td>
</tr>
<tr>
<td>BIOL 1001 3.0</td>
<td>W</td>
<td>BIOL 1000 3.0</td>
<td>12U Physics or PHYS 1510 4.0</td>
</tr>
<tr>
<td>PHYS 1010 6.0</td>
<td>Y</td>
<td>12U Calculus</td>
<td>MATH 1013 3.0; MATH 1014 4.0</td>
</tr>
<tr>
<td>MATH 1013 3.0</td>
<td>F</td>
<td>12U Mathematics</td>
<td></td>
</tr>
<tr>
<td>MATH 1014 3.0</td>
<td>W</td>
<td>MATH 1013 3.0</td>
<td></td>
</tr>
<tr>
<td>MATH 1025 3.0</td>
<td>FW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 1541 3.0</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0 non-science credits</td>
<td></td>
<td></td>
<td>Consult host Department</td>
</tr>
</tbody>
</table>

Total = 30 credits
Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
<th>Prerequisites</th>
<th>Corequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPHS 2090 3.0</td>
<td>F</td>
<td>PHYS 1010 6.0; BIOL 1000 3.0; BIOL 1001 3.0</td>
<td></td>
</tr>
<tr>
<td>BIOL 2040 3.0</td>
<td>W</td>
<td>BIOL 1000 3.0; BIOL 1001 3.0</td>
<td></td>
</tr>
<tr>
<td>CHEM 1000 3.0</td>
<td>F</td>
<td>12U Chemistry or CHEM 1500 4.0</td>
<td></td>
</tr>
<tr>
<td>CHEM 1001 3.0</td>
<td>W</td>
<td>12U Chemistry or CHEM 1500 4.0</td>
<td></td>
</tr>
<tr>
<td>PHYS 2010 3.0</td>
<td>W</td>
<td>PHYS 1010 6.0; MATH 1014 3.0; MATH 1025 3.0; MATH 2015 3.0</td>
<td>MATH 2271 3.0</td>
</tr>
<tr>
<td>PHYS 2020 3.0</td>
<td>F</td>
<td>PHYS 1010 6.0</td>
<td>MATH 2015 3.0</td>
</tr>
<tr>
<td>PHYS 2060 3.0</td>
<td>W</td>
<td>PHYS 1010 6.0; MATH 1014 3.0; MATH 1025 3.0</td>
<td></td>
</tr>
<tr>
<td>PHYS 2213 3.0</td>
<td>Y</td>
<td>PHYS 1010 6.0</td>
<td></td>
</tr>
<tr>
<td>MATH 2015 3.0</td>
<td>F</td>
<td>MATH 1014 3.0</td>
<td></td>
</tr>
<tr>
<td>MATH 2271 3.0</td>
<td>W</td>
<td>MATH 1025 3.0; MATH 2015 3.0</td>
<td></td>
</tr>
</tbody>
</table>

Total = 30 credits
Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
<th>Prerequisite</th>
<th>Corequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPHS 3090 3.0</td>
<td>W</td>
<td>BPHS 2090 3.0; PHYS 2020 3.0; PHYS 2060 3.0</td>
<td></td>
</tr>
<tr>
<td>BIOL 2020 3.0</td>
<td>F</td>
<td>BIOL 1000 3.0; BIOL 1001 3.0; CHEM 1000 3.0; CHEM 1001 3.0</td>
<td></td>
</tr>
<tr>
<td>BIOL 2021 3.0</td>
<td>W</td>
<td>BIOL 2020 3.0</td>
<td></td>
</tr>
<tr>
<td>BIOL 2070 3.0</td>
<td>F</td>
<td>BIOL 1000 3.0; BIOL 1001 3.0; CHEM 1000 3.0; CHEM 1001 3.0</td>
<td></td>
</tr>
<tr>
<td>PHYS 3030 3.0</td>
<td>F</td>
<td>PHYS 2020 3.0; MATH 2015 3.0; MATH 2271 3.0</td>
<td></td>
</tr>
<tr>
<td>PHYS 3040 6.0</td>
<td>Y</td>
<td>PHYS 2010 3.0; PHYS 2020 3.0; PHYS 2060 3.0; MATH 2015 3.0; MATH 2271 3.0</td>
<td>PHYS 3040 6.0</td>
</tr>
<tr>
<td>PHYS 4061 3.0</td>
<td>W</td>
<td>PHYS 2020 3.0; PHYS 2060 3.0; PHYS 2213 3.0</td>
<td></td>
</tr>
</tbody>
</table>

6 additional credits (see list below)

Total = 30 credits

Year 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
<th>Prerequisites</th>
<th>Corequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPHS 4090 4.0</td>
<td>F</td>
<td>BPHS 3090 3.0; PHYS 3040 6.0</td>
<td></td>
</tr>
</tbody>
</table>

6.0 non-science credits Consult host Department

20 additional credits (see list below)

Total = 30 credits
Options for 3rd and 4th year

9 credits from

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Corequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2040 3.0</td>
<td>Relativity and Modern Physics</td>
<td>F</td>
<td>PHYS 1010 6.0</td>
</tr>
<tr>
<td>PHYS 3020 3.0</td>
<td>Electromagnetics I</td>
<td>F</td>
<td>PHYS 2020 3.0; MATH 2015 3.0; MATH 2271 3.0</td>
</tr>
<tr>
<td>PHYS 3050 3.0</td>
<td>Electronics I</td>
<td>F</td>
<td>PHYS 1010 6.0</td>
</tr>
<tr>
<td>PHYS 3090 3.0</td>
<td>Methods in Theoretical Physics</td>
<td>F</td>
<td>PHYS 2020 3.0</td>
</tr>
<tr>
<td>PHYS 3150 3.0</td>
<td>Electronics II</td>
<td>W</td>
<td>PHYS 1010 6.0</td>
</tr>
<tr>
<td>PHYS 3220 3.0</td>
<td>Experiments in Modern Physics</td>
<td>F</td>
<td>PHYS 2020 3.0; PHYS 2060 3.0; PHYS 2213 3.0</td>
</tr>
<tr>
<td>PHYS 3320 3.0</td>
<td>Microsystems Technology</td>
<td>W</td>
<td>PHYS 2020 3.0; PHYS 2213 3.0</td>
</tr>
<tr>
<td>PHYS 4010 3.0</td>
<td>Quantum Mechanics</td>
<td>F</td>
<td>PHYS 3040 6.0</td>
</tr>
<tr>
<td>PHYS 4011 3.0</td>
<td>Atomics and Molecular Physics</td>
<td>W</td>
<td>PHYS 4010 3.0</td>
</tr>
<tr>
<td>PHYS 4020 3.0</td>
<td>Electromagnetics II</td>
<td>W</td>
<td>PHYS 2040 3.0; PHYS 3020 3.0</td>
</tr>
<tr>
<td>PHYS 4040 3.0</td>
<td>Elementary Particle Physics</td>
<td>W</td>
<td>PHYS 2040 3.0; PHYS 4010 3.0</td>
</tr>
<tr>
<td>PHYS 4050 3.0</td>
<td>Solid State Physics</td>
<td>W</td>
<td>PHYS 3030 3.0; PHYS 4010 3.0</td>
</tr>
<tr>
<td>PHYS 4120 3.0</td>
<td>Gas and Fluid Dynamics</td>
<td>F</td>
<td>PHYS 2010 3.0, MATH 2015 3.0; MATH 2271 3.0</td>
</tr>
</tbody>
</table>

PLUS

15 credits from

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Corequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3010 3.0</td>
<td>Advanced Biochemistry</td>
<td>F</td>
<td>BIOL 2020 3.0; CHEM 2020 6.0</td>
</tr>
<tr>
<td>BIOL 3051 3.0</td>
<td>Macromolecules of Biochemical Interest</td>
<td>F</td>
<td>BIOL 2020 3.0; CHEM 2020 6.0</td>
</tr>
<tr>
<td>BIOL 3060 4.0</td>
<td>Animal Physiology I</td>
<td>F</td>
<td>BIOL 2020 4.0; BIOL 2030 4.0</td>
</tr>
<tr>
<td>BIOL 3110 3.0</td>
<td>Molecular Biology I: Nucleic Acid Metabolism</td>
<td>F</td>
<td>BIOL 2020 3.0; BIOL 2070 3.0</td>
</tr>
<tr>
<td>BIOL 3120 3.0</td>
<td>Immunobiology</td>
<td>W</td>
<td>BIOL 2040 3.0</td>
</tr>
<tr>
<td>BIOL 3130 3.0</td>
<td>Molecular Biology II: Regulation of Gene Expression</td>
<td>W</td>
<td>BIOL 3110 3.0</td>
</tr>
<tr>
<td>BIOL 3150 4.0</td>
<td>Microbiology</td>
<td>W</td>
<td>BIOL 2020 3.0; BIOL 2021 3.0; BIOL 2040 3.0</td>
</tr>
<tr>
<td>BIOL 3155 3.0</td>
<td>Virology</td>
<td>W</td>
<td>BIOL 2020 3.0; BIOL 2021 3.0; BIOL 2070 3.0</td>
</tr>
<tr>
<td>BIOL 4030 3.0</td>
<td>Proteomics</td>
<td>F</td>
<td>BIOL 3110 3.0</td>
</tr>
<tr>
<td>BIOL 4061 3.0</td>
<td>Cell and Molecular Biology of Development</td>
<td>W</td>
<td>BIOL 2020 3.0; BIOL 2021 3.0</td>
</tr>
<tr>
<td>BIOL 4141 3.0</td>
<td>Current Topics and Methods in Cell Biology</td>
<td>F</td>
<td>BIOL 2020 3.0; BIOL 2021 3.0</td>
</tr>
<tr>
<td>BIOL 4150 3.0</td>
<td>Cellular Regulation</td>
<td>W</td>
<td>BIOL 2020 3.0; BIOL 2021 3.0</td>
</tr>
<tr>
<td>BIOL 4151 3.0</td>
<td>Membrane Transport</td>
<td>F</td>
<td>BIOL 2020 3.0; BIOL 2021 3.0</td>
</tr>
<tr>
<td>BIOL 4160 4.0</td>
<td>Photosynthesis</td>
<td>F</td>
<td>BIOL 2021 3.0; BIOL 2070 3.0</td>
</tr>
<tr>
<td>CHEM 2020 3.0</td>
<td>Introductory Organic Chemistry I</td>
<td>F</td>
<td>CHEM 1000 3.0; CHEM 1001 3.0</td>
</tr>
<tr>
<td>CHEM 2021 3.0</td>
<td>Introductory Organic Chemistry II</td>
<td>W</td>
<td>CHEM 2020 3.0</td>
</tr>
<tr>
<td>CHEM 4092 3.0*</td>
<td>X-Ray Crystallography</td>
<td>F</td>
<td>CHEM 3030 3.0 (CHEM 2010; CHEM 2020 3.0; CHEM 2030 3.0)</td>
</tr>
<tr>
<td>CHEM 4093 3.0</td>
<td>Biomaterials Chemistry</td>
<td>W</td>
<td>BIOL 3051 3.0(or CHEM 3090 3.0)</td>
</tr>
<tr>
<td>KINE 2031 3.0</td>
<td>Human Anatomy</td>
<td>F</td>
<td>None</td>
</tr>
<tr>
<td>KINE 4470 3.0**</td>
<td>Muscle and Joint Biomechanics</td>
<td>F</td>
<td>KINE 3030 3.0 (KINE 2031 3.0)</td>
</tr>
</tbody>
</table>

PLUS

2 elective credits

* Options for 2nd and 3rd year.

** Recommended courses:**
- BIOL 3110 3.0
- BIOL 3010 3.0

* Options for 3rd and 4th year.

Recommended courses:
- BIOL 3110 3.0
- BIOL 3010 3.0

Recommended courses:
- BIOL 3110 3.0
- BIOL 3010 3.0

Recommended courses:
- BIOL 3110 3.0
- BIOL 3010 3.0

Recommended courses:
- BIOL 3110 3.0
- BIOL 3010 3.0
NOTE:

* CHEM is willing to give Biophysics Majors permission to enter CHEM 4092 3.0 without having the required prerequisites

** KINE is willing to give Biophysics Majors permission to enter KINE 4470 3.0 without having the prerequisite (KINE 3030 3.0)

At least 42 credits at the 3000 or higher level, including at least 12 major credits at the 4000 level are required to fulfill degree requirements.

Recommendations:

Majors interested in **Applied Biophysics** should consider enrolling in the following elective courses:

PHYS 3020 3.0, PHYS 3050 3.0, PHYS 3150 3.0, PHYS 3220 3.0, PHYS 3320 3.0, PHYS 4040 3.0,

PHYS 4050 3.0, PHYS 4120 3.0, BIOL 3060 4.0, BIOL 3120 3.0, BIOL 4030 3.0, BIOL 4141 3.0,

BIOL 4151 3.0, BIOL 4160 4.0, CHEM 4093 3.0, KINE 2031 3.0, KINE 4470 3.0.

Majors interested in **Structural Biology** should consider enrolling in the following elective courses:

PHYS 3020 3.0, PHYS 3090 3.0, PHYS 3220 3.0, PHYS 4010 3.0, PHYS 4011 3.0, BIOL 3010 3.0,

BIOL 3051 3.0, BIOL 3110 3.0, BIOL 3130 3.0, BIOL 4030 3.0, CHEM 2020 6.0, CHEM 4092 3.0,

CHEM 4093 3.0.
An introduction to biophysics highlighting major themes in pure and applied biophysical research. Included is coverage of fundamental concepts in fluid mechanics. The course will present biology and physics students with an overview of the role of physics in biological research.

Required Text

No required text.

Prerequisites

SC/PHYS 1010 6.0 or SC/PHYS 1410 6.0 or SC/PHYS 1420 6.0; SC/BIOL 1000 3.0 and SC/BIOL 1001 3.0, or SC/BIOL 1410 6.0.

One term. Three credits.

This course will focus on physics relevant to cellular dynamics and transport. Basic principles will include: electrodynamics (e.g., charge transport across cells, Nernst potentials), diffusion, osmosis, and wave propagation. Salient biological topics will be approached in a rigorous mathematical fashion and include those such as: cellular homeostasis, the Hodgkin-Huxley model for action potentials, molecular biology of ion channels, and molecular motors (e.g., motion in low Reynolds-number regimes). The objective of the course is to help students to integrate the knowledge gained in second and third year biology and physics courses and to use methods of physics to study biological processes.

Required Text

Prerequisites

SC/BPHS 2090 2.0; SC/PHYS 2020 3.0; SC/PHYS 2060 3.0.

One term. Three credits.
This experiential education course reflects the work term component of the Technology Internship Program (TIP.) Qualified Honours students gain relevant work experience as an integrated complement to their academic studies, reflected in the requirements of a learning agreement and work term report. Students are required to register in this course for each for month work term, with the maximum number of work term courses being four (i.e. 16 months.) Students in this course receive assistance from the Career Centre prior to and during their internship, and are also assigned a Faculty Supervisor/Committee.

Prerequisites

Enrollment is by permission only. Criteria for permission include: 1. That students have successfully completed at least 9 BPHS or PHYS credits at the 3000 level or higher, including SC/BPHS 3090, and have a GPA of at least 5.00 in BPHS, BIOL, and PHYS courses overall; 2. That students are enrolled full-time in the Honours program prior to beginning their internship and have attended the mandatory preparatory sessions as outlined by the Career Centre; 3. That students have not been absent for more than two consecutive years as a full-time student from their Honours degree studies; 4. That upon enrolling in this course students have a minimum of 9 credits remaining toward their Honours degree and need to return as a full-time student for at least one academic term to complete their degree after completion of their final work term.

Note: This course is a pass/fail course, which does not count for degree credit. Registration in SC/BPHS 3900 0.00 provides a record on the transcript for each work term.

This course will focus on applications of atomic, nuclear, and quantum physics in biology and medicine. Topics will include interactions between radiation and matter (including spectroscopy), principles of imaging and radiation therapy in medicine, and micro/nano-fluidics. An array of modern experimental techniques will also be covered, including those such as: optical tweezers, atomic force microscopy (AFM), x-ray crystallography, and nuclear magnetic resonance (NMR, MRI). Relevant signal processing strategies such as spectral analysis (e.g., Fourier transforms) and image analysis (e.g., convolutions, tomography) will be covered in detail. A regular three-hour laboratory is an integral part of the course. Students will undertake several experiments covering topics such as the following: diffusion of bio-molecules (including electro-diffusion across membranes), action potentials, absorption of radiation and fluorescence of bio-molecules, NMR spectroscopy, X-ray crystallography to determine protein structure, and bioacoustics. The objective of the course is to help students to integrate the knowledge gained in third and fourth year biology and physics courses and to use methods and techniques of physics to study biological processes. The course is designed to be a capstone to the Biophysics Program.

Prerequisites

SC/BPHS 3090 3.0; SC/PHYS 3040 6.0.

One term. Four credits.
An introduction to major unifying concepts and fundamental principles of biology, including evolution and cell theory. Topics include cells, biological energetics, metabolism, cell division and genetics. The laboratory and lecture components must be passed independently to pass the course.

Required Text
Course kit.

Prerequisites
OAC Biology or 12U Biology or SC/BIOL 1500 3.0; OAC Chemistry or 12U Chemistry or SC/CHEM 1500 4.0.

Course Credit Exclusions
SC/BIOL 1010 6.00; SC/BIOL 1410 6.00.

One term. Three credits.

Three lecture hours per week; three laboratory hours in alternate weeks.

A continuation of Biology I, exploring major unifying concepts and fundamental principles of biology, building on earlier concepts. Topics include mechanisms of evolution, ecology, a survey of biodiversity and conservation biology. The laboratory and lecture components must be passed independently to pass the course.

Required Text
Course kit.

Prerequisites
SC/BIOL 1000 3.0.

Course Credit Exclusions
SC/BIOL 1010 6.0; SC/BIOL 1410 6.0.

One term. Three credits.

Three lecture hours per week; three laboratory hours in alternate weeks.
BIOL 2020 3.0 BIOCHEMISTRY

A study of the cell biology and biochemistry of biomolecules. Topics include intermediary metabolism related to bioenergetics, including the biology of mitochondria and chloroplasts, protein structure and function, nucleic acid replication, gene expression, chromosome organization and recombinant DNA technology.

Required Text

Prerequisites

Both SC/BIOL 1000 3.0 and SC/BIOL 1001 3.0 or SC/BIOL 1010 6.0; both SC/CHEM 1000 3.0 and SC/CHEM 1001 3.0, or SC/CHEM 1000 6.0.

Course Credit Exclusion

SC/BIOL 2020 4.0, SC/BCHM 2020 4.0, SC/CHEM 2050 4.0.

One term. Three credits.

Three lecture hours, three laboratory hours.

BIOL 2021 3.0 CELL BIOLOGY

A study of cell biology and aspects of related biochemistry. Topics include membranes, the endomembrane system, the cytoskeleton, cellular motility, the extracellular matrix, intercellular communication and intracellular regulation.

Required Text

Prerequisites

One of the following: (1) SC/BIOL 2020 4.0, (2) SC/BCHM 2020 4.0, (3) SC/BIOL 2020 3.0, (4) SC/BCHM 2020 3.0, (5) SC/BIOL 1010 6.0 and SC/CHEM 2050 4.0, (6) SC/BIOL 1000 3.0 and SC/BIOI 1001 3.0 and SC/CHEM 2050 4.0.

Course Credit Exclusion

SC/BIOL 2021 4.0, SC/BCHM 2021 4.0.

One term. Three credits.

Three lecture hours, three laboratory hours.
BIOL 2040 3.0 GENETICS

A study of the organization and behaviour of genes and chromosomes and their roles in cells, organisms, populations and evolution.

Required Text
TBA

Prerequisites
Both SC/BIOL 1000 3.0 and SC/BIOL 1001 3.0 or SC/BIOL 1010 6.0.

Degree Credit Exclusion
SC/BIOL 2040 4.0

One term. Four credits.

Three lecture hours, one tutorial hour.

BIOL 2070 3.0 RESEARCH METHODS IN CELL AND MOLECULAR BIOLOGY

This course focuses on laboratory techniques in the life sciences. Practical research skills are developed through experiential learning using current biochemistry, cell and molecular biology techniques. Research skills include scientific writing, data analysis/interpretation, experimental design and hypothesis testing.

Required Text
TBA

Prerequisites
SC/BIOL 1010 6.0, or SC/BIOL 1000 3.0 and SC/BIOL 1001 3.0; SC/CHEM 1000 3.0 and SC/CHEM 1001 3.0.

One term. Three credits.

One lecture hour, six laboratory/practical hours per week.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Required Text</th>
<th>Prerequisites</th>
</tr>
</thead>
</table>
BIOL 3060 4.0 ANIMAL PHYSIOLOGY I

Fundamental concepts in sensory, neural and behavioural physiology. The biochemical mechanisms whereby nerve cells detect and transmit information and the processes whereby information is integrated in the nervous system and gives rise to the outputs of behaviour.

Required Text
TBA

Prerequisites
SC/BIOL 2030 4.0, SC/BIOL 2020 4.0, SC/BIOL 2021 4.0.

One term. Four credits.

Three lecture hours, three laboratory hours.

BIOL 3110 3.0 MOLECULAR BIOLOGY I: NUCLEIC ACID METABOLISM

Discussion of the metabolism of DNA and RNA, including the physical-chemical properties of nucleic acids; DNA-protein interactions; chromosome structure; nucleic acid replication, repair and recombination; recombinant DNA technology.

Required Text

Prerequisites
One of the following: (1) SC/BIOL 2020 4.0 or SC/BCHM 2020 4.0; SC/BIOL 2021 4.0 or SC/BCHM 2021 4.0; SC/BIOL 2040 4.0; (2) if the three credit course is taken in either one or more of SC/BIOL 2020, SC/BIOL 2021, SC/BIOL 2040, then SC/BIOL 2070 3.0 is required.

One term. Three credits.

Three lecture hours.
BIOL 3120 3.0 IMMUNOBIOLOGY

The biology and chemistry of the immune response. Structure and function of antibodies; antibody diversity; anatomy and development of the immune system; cellular interactions; immunological responses in disease. Production and use of monoclonal and polyclonal antibodies.

Required Text

TBA

Prerequisites

SC BIOL 2020 4.0; SC BIOL 2021 4.0; SC BIOL 2040 4.0.

One term. Three credits.

Three lecture hours.

BIOL 3130 3.0 MOLECULAR BIOLOGY II: REGULATION OF GENE EXPRESSION

Required Text

Prerequisites

SC BIOL 3110 3.0 or SC BCHM 3110 3.0

One term. Three credits.

Three lecture hours.
BIOL 3150 4.0 MICROBIOLOGY

Fundamentals of microbiology; microbial organisms; microbe-host interactions; microbial genetics and evolution; microorganisms and human disease; environmental and applied microbiology.

Required Text

TBA

Prerequisites

One of the following: (1) SC/BIOL 2020 4.0 or SC/BCHM 2020 4.0; SC/BIOL 2021 4.0 or SC/BCHM 2021 4.0; SC/BIOL 2040 4.0; (2) if the 3 credit course is taken in either one or more of SC/BIOL 2020, SC/BIOL 2021, SC/BIOL 2040, then SC/BIOL 2070 3.0 is required.

Course Credit Exclusion

SC/BIOL 3150 3.0

One term. Four credits.

Three lecture hours, three laboratory hours.

BIOL 3155 3.0 VIROLOGY

An in-depth examination of cellular, molecular and structural aspects of virology. Molecular processes and concepts are emphasized using examples from current research literature. Virus-host interactions are investigated in various systems.

Required Text

TBA

Prerequisites

SC/BIOL 2020 4.0; SC/BIOL 2021 4.0.

One term. Three credits.

Three lecture hours per week.
BIOL 4030 3.0 PROTEOMICS

Contemporary proteomic methodologies and applications. Specific topics: high-throughput methods, protein identification, protein complexes, structural proteomics, sub-cellular proteomics and molecular modeling.

Required Text

TBA

Prerequisites

SC/BCHM 3110 3.0 or SC/BIOL 3110 3.0.

BIOL 4061 3.0 CELL & MOLECULAR BIOLOGY OF DEVELOPMENT

This course presents a genetic and molecular biological approach to the field of developmental biology. Topics range from unicellular systems, both prokaryotic and eukaryotic, to more complex, multicellular systems.

Required Text

TBA

Prerequisites

SC/BIOL 2020 4.0; SC/BIOL 2021 4.0; SC/BIOL 2040 4.0.

One term. Three credits.

Three lecture hours.
BIOL 4141 3.0 CURRENT TOPICS AND METHODS IN CELL BIOLOGY

Selected topics in cell biology, such as membrane dynamics, cell cycle control, apoptosis, signal transduction and cellular rhythmicity. Presentation and critical discussion of recent research papers, emphasizing current methods and experimental design.

Required Text

TBA

Prerequisites

SC/BIOL 3130 3.0.

Course credit exclusion

SC/BIOL 4140 3.0 from Fall/Winter 2002-2003 only.

One term. Three credits.

Three lecture hours.

BIOL 4150 3.0 CELLULAR REGULATION

A detailed examination of molecular, cellular and physiological processes associated with the action of peptide hormones, neuro-transmitters and growth factors. Emphasis is on cell receptors and signal transduction mechanisms involving cyclic nucleotides and calcium.

Required Text

TBA

Prerequisites

SC/BIOL 2020 4.0; SC/BIOL 2021 4.0; SC/BIOL 3010 3.0 and SC/BIOL 3110 3.0 strongly recommended as prerequisites or corequisites.

One term. Three credits.

Three lecture hours.
BIOL 4151 3.0 MEMBRANE TRANSPORT

The fundamental properties of solute transport are presented by discussing active ion pumps, passive transporters and ion channels of bacteria, plants and animals. The role of transport in regulating the intracellular environment in animals and plants is emphasized.

Required Text

Course Kit

Prerequisites

SC/BIOL 2020 4.0; SC/BIOL 2021 4.0; SC/BIOL 3010 3.0 and SC/BIOL 3110 3.0 strongly recommended as prerequisites or corequisites.

One term. Three Credits

Three lecture hours.

BIOL 4160 3.0 PHOTOSYNTHESIS

A study of the process of photosynthesis at the biochemical, organelle and whole-organism levels, including structure of the photosynthetic apparatus, primary light-harvesting processes, electron transport; photophosphorylation, mechanism of carbon dioxide fixation in higher plants and algae, photorespiration.

Required Text

TBA

Prerequisites

One of the following: (1) SC/BIOL 2021 4.0 or SC/BCHM 2021 4.0; (2) SC/BIOL 2021 3.0 or SC/BCHM 2021 3.0; SC/BIOL 2070 3.0.

One term. Three credits.

Two lecture hours, three laboratory hours.
CHEM 1000 3.0 CHEMICAL STRUCTURE

Introduction to chemistry with emphasis on physical and electronic structure of matter, including gases, liquids and solids. Topics include behaviour of gases; thermochemistry; atomic structure and periodic table; chemical bonding and architecture; structure of liquids and solids; frontiers of chemistry.

Required Text

Prerequisites

OAC chemistry, 12U chemistry or SC/CHEM 1500 4.0 or equivalent.

Course Credit Exclusion

SC/CHEM 1000 6.0, SC/CHEM 1010 6.0.

One term. Three credits.

Two and one-half lecture hours per week, one tutorial hour per week, six three-hour laboratory sessions.

CHEM 1001 3.0 CHEMICAL DYNAMICS

This course complements SC/CHEM 1000 3.00 - with emphasis on chemical change and equilibrium. Topics include chemical kinetics; chemical equilibrium; entropy and free energy as driving forces for chemical change; electrochemistry; frontiers in chemistry.

Required Text

Prerequisites

OAC chemistry, 12U chemistry or SC/CHEM 1500 4.0 or equivalent.

Course Credit Exclusion

SC/CHEM 1000 6.0, SC/CHEM 1010 6.0

One term. Three credits.

Two and one-half lecture hours per week, one tutorial hour per week, six three-hour laboratory sessions.
CHEM 2020 3.0 INTRODUCTORY ORGANIC CHEMISTRY I

An introduction to organic chemistry: nomenclature, bonding, structure, resonance, reactivity, thermodynamics, kinetics, preparation and reactions of alkanes, alkenes, alkynes, alkyl halides and alcohols, with mechanisms.

Required Text
TBA

Prerequisites
SC/CHEM 1000 3.00, SC/CHEM 1001 3.00

Course Credit Exclusion
SC/CHEM 2020 6.0.

One term. Three credits.

Three lecture hours and one tutorial hour per week. One three-hour laboratory session every two weeks.

CHEM 2021 3.0 INTRODUCTORY ORGANIC CHEMISTRY II

A continuation of SC/CHEM 2020 3.00: structure determination (IR, MS, NMR), aromaticity, electrophilic aromatic substitution, preparation and reactions of ethers, epoxides, carbonyl compounds, amines, carboxylic acids and derivatives, with mechanisms.

Required Text
TBA

Prerequisites
SC/CHEM 2020 3.0.

Course Credit Exclusion
SC/CHEM 2020 6.00.

One term. Three credits.

Three lecture hours and one tutorial hour per week. One three-hour laboratory session every two weeks.
CHEM 4092 3.0 X-RAY CRYSTALLOGRAPHY

Principles, practical details and computational methods of X-ray crystallographic structure determination. Students carry out an original structure determination from raw reflection data.

Required Text
TBA

Prerequisites
SC/CHEM 3030 3.0 or SC/CHEM 3030 4.0.

One term. Three credits.

CHEM 4093 3.0 BIOMATERIALS CHEMISTRY

This course serves as an introduction to materials used for biomedical applications for students with background in chemistry, physics and biology. Emphasis is on biological and biomimetic surfaces, interactions at the biomaterial/tissue interfaces, and mechanisms involved with biologically driven materials self-assembly.

Content

The course covers a range of natural and synthetic biomaterials, general aspects of their structure, properties, behavior in contact with biological systems and selected applications. It highlights latest advancements in biomaterials research and technology including approaches to surface modification for enhanced biocompatibility of materials, development of materials with controlled properties for drug delivery and biologically inspired materials that mimic natural systems and processes as well as design of sophisticated three-dimensional architectures for tissue engineering.

1. Review of major classes of biomaterials.
2. Bulk properties of biomaterials.
3. Surface properties of biomaterials, interactions with biological systems and biocompatibility. Methods of surface characterization.
4. Surface modification strategies for enhanced biocompatibility.
6. Immunoisolation strategies and drug delivery.
7. Approaches to tissue engineering.

Required Text

Prerequisites

SC/CHEM 3051 3.0 or SC/CHEM 3090 3.0.

One term. Three credits.

Three lecture hours.
CSE 1541 3.0 COMPUTING FOR THE PHYSICAL SCIENCES

An introduction to scientific computing using an integrated computing and visualization platform. Elements of procedural programming such as: control structures, data types, program modules. Visualization in two and three dimensions. Applications to numerical computation and simulations relevant to the physical sciences.

Required Text

TBA

Prerequisites

SC/MATH 1013 3.00 or equivalent.

Corequisites

SC/PHYS 1010 6.00 or SC/PHYS 1410 6.00 or SC/PHYS 1420 6.00; and SC/MATH 1021 3.00 or SC/MATH 1025 3.00.

Course Credit Exclusions

LE/SC/CSE 1560 3.00, LE/SC/CSE1570 3.00.

One Term. Three credits.

Twice weekly meetings, each consisting of one lecture hour followed by a one and a half hour laboratory session.
MATH 1013 3.0 APPLIED CALCULUS I

Required Text
TBA

Prerequisites
SC/MATH 1515 3.0 or SC/MATH 1520 3.0, or a high school calculus course.

Course Credit Exclusion

Prior to Fall 2009:
Prerequisites: AS/SC/MATH 1515 3.0 or AS/SC/MATH 1520 3.0, or a high school calculus course.
Course credit exclusions: AS/SC/MATH 1000 3.00, AK/AS/SC/MATH 1300 3.00, AS/SC/MATH 1505 6.00, AS/SC/MATH 1513 6.00, AS/MATH 1530 3.00, AK/AS/MATH 1550 6.00, GL/MATH/MODR 1930 3.00, AS/ECON 1530 3.00.

One term. Three credits.

Three lecture hours per week.

MATH 1014 3.0 APPLIED CALCULUS II

Required Text
TBA

Prerequisites
One of SC/MATH 1000 3.0, SC/MATH 1013 3.0, SC/MATH 1300 3.0, or SC/MATH 1513 6.0; for non-science students only, six credits from SC/MATH 1530 3.0 and SC/MATH 1540 3.0, SC/MATH 1550 6.0, AP/ECON 1530 3.0 and AP/ECON 1540 3.0.

Course Credit Exclusion
SC/MATH 1010 3.0, SC/MATH 1310 3.0, SC/MATH 1505 6.0, GL/MATH/MODR 1940 3.0.

Prior to Fall 2009:
Prerequisites: One of AS/SC/MATH 1000 3.0, AS/SC/MATH 1013 3.0, AK/AS/SC/MATH 1300 3.0, or AS/SC/MATH 1513 6.0; for non-science students only, six credits from AS/MATH 1530 3.0 and AS/MATH 1540 3.0, AK/AS/MATH 1550 6.0, AS/ECON 1530 3.0 and AS/ECON 1540 3.0.
Course credit exclusions: AS/SC/MATH 1010 3.00, AK/AS/SC/MATH 1310 3.00, AS/SC/MATH 1505 6.00, GL/MATH/MODR 1940 3.00.

One term. Three credits.

Three lecture hours per week.
MATH 1025 3.0 APPLIED LINEAR ALGEBRA

Topics include spherical and cylindrical coordinates in Euclidean 3-space, general matrix algebra, determinants, vector space concepts for Euclidean n-space (e.g. linear dependence and independence, basis, dimension, linear transformations etc.), an introduction to eigenvalues and eigenvectors.

Required Text
TBA

Prerequisites
One 12U or OAC mathematics course or equivalent.

Course Credit Exclusion

Prior to Fall 2009:

One term. Three credits.

Two and one-half lecture hours per week. One Tutorial hour per week. Six three hour laboratory sessions.

MATH 2015 3.0 APPLIED MULTIVARIATE AND VECTOR CALCULUS

Topics covered include partial derivatives; grad, div, curl and Laplacian operators; line and surface integrals; theorems of Gauss and Stokes; double and triple integrals in various coordinate systems; extrema and Taylor series for multivariate functions.

Required Text
TBA

Prerequisites
One of SC/MATH 1010 3.0, SC/MATH 1014 3.0, SC/MATH 1310 3.0; or SC/MATH 1505 6.0 plus permission of the course coordinator.

Course Credit Exclusion

Prior to Fall 2009:

Prerequisite: One of AS/SC/MATH 1010 3.0, AS/SC/MATH 1014 3.0, AK/AS/SC/MATH 1310 3.0; or AS/SC/MATH 1505 6.0 plus permission of the course coordinator.
Course credit exclusions: AS/SC/MATH 2010 3.00, AK/AS/SC/MATH 2310 3.00, GL/MATH/MODR 2670 3.00, GL/MATH 3200 3.00.

One term. Three credits.

Three lecture hours per week.
MATH 2271 3.0 DIFFERENTIAL EQUATIONS
FOR SCIENTISTS AND
ENGINEERS

Introduction to ordinary and partial differential equations, including their classification, boundary conditions, and methods of solution. Equations, methods, and solutions relevant to science and engineering are emphasized, and exploration is encouraged with the aid of software.

Required Text
TBA

Prerequisites
One of SC/MATH 2010 3.0, SC/MATH 2015 3.0, SC/MATH 2310 3.0 or equivalent; one of SC/MATH 1025 3.0, SC/MATH 2022 3.0, SC/MATH 2222 3.0 or equivalent.

Course Credit Exclusion
SC/MATH 2270 3.0, GL/MATH 3400 3.0.

Prior to Fall 2009:
Course Credit Exclusions: AS/SC/MATH 2270 3.00, GL/MATH 3400 3.00.

One term. Three credits.

Three lecture hours per week.
An overview of the organization and structure of the human body. Each of the following systems is examined with respect to cell morphology, cell and tissue arrangement and inter-systems organization: skeletal, muscular, nervous, circulatory, lymphatic, respiratory, urinary, reproductive and endocrine.

Required Text

TBA

Course Credit Exclusions

AS/SC/KINE 3070 3.0

Prior to Fall/Winter 1997-1998:

AS/SC/PHED 2070 3.00

Prior to Fall/Winter 1996-1997:

SC/PHED 2070 4.00

Prior to Fall/Winter 1996-1997:

AS/PHED 3070 3.00

Prior to Fall/Winter 1996-1997:

SC/PHED 3070 4.00

Prior to Fall/Winter 1996-1997:

SC/NATS 1650 6.00.

One term. Three credits.

Three lecture hours per week, two laboratory hours in alternate weeks.

Quantitative biomechanical principles are used to evaluate the production of human motion at the joint and muscle level. Factors affecting total joint moment of force are studied including muscle mechanics, muscle architecture, moment arm and electrophysiology.

Required Text

TBA

Prerequisite

AS/HH/SC/KINE 3030 3.0.

Course Credit Exclusions

Prior to Fall/Winter 2003-2004:

AS/SC/KINE 3470 3.0.

One term.

Two lecture hours and two laboratory hours per week.
Topics include linear, rotational and oscillatory motion; Newtonian mechanics; gravitation; electrostatics; magnetostatics; electric current and induction; heat; geometrical and physical optics and sound. Differential and integral calculus and vector algebra are used. This course covers fewer topics than SC/PHYS 1410 6.00, but covers them in greater depth. It should be taken by all those likely to enrol in 2000-level physics courses. Includes three hour laboratory component normally in alternating weeks.

Content

1. Motion in one, two and three dimensions
2. Newton’s laws
3. Work, energy, power
4. Momentum
5. Torque and rotational motion
6. Angular momentum
7. Oscillations
8. Gravitation
9. Thermodynamics
10. Static electricity
11. Capacitance
12. DC circuits
13. Magnetic fields
14. Electromagnetic induction
15. Waves and sound
16. Electromagnetic waves
17. Physical and geometrical optics

In addition, some concepts of modern physics are introduced interspersed throughout.

Required Text

N. Giordano, College Physics (Special Package.)
Nelson Publications; 2009

Recommended Text

PHYS 2010 3.0 CLASSICAL MECHANICS

Content

1. One dimensional motion of a particle
2. The harmonic oscillator, forced oscillations
3. Motion in two and three dimensions
4. Non-inertial reference frames and dynamics
5. Central forces: applications to celestial mechanics
6. Systems of particles – Centre of mass and angular momentum
7. Moment of inertia and rigid-body rotation

Required Text

Prerequisites

SC/PHYS 1010 6.0, or a minimum grade of C in SC/PHYS 1410 6.0 or SC/PHYS 1420 6.0; SC/MATH 1014 3.0 or equivalent; SC/MATH 1025 3.0 or equivalent; SC/MATH 2015 3.0 or equivalent.

Corequisite

SC/MATH 2271 3.0.

Prior to Fall 2010:
Prerequisites: SC/PHYS 1010 6.0, or a minimum grade of C in SC/PHYS 1410 6.0 or SC/PHYS 1420 6.0; AS/SC/MATH 1014 3.0 or equivalent; AS/SC/MATH 1025 3.00 or equivalent; Corequisite: SC/MATH 2015 3.00.

One term. Three credits.

Three lecture hours per week. One tutorial hour per week.

PHYS 2020 3.0 ELECTRICITY AND MAGNETISM

The elements of electric and magnetic fields are developed together with DC and AC circuit theory.

Content

1. Coulomb's Law
2. Electric field
3. Gauss' Law
4. Electric potential
5. Electrostatic energy
6. Capacitors and dielectrics
7. Current, resistance, Ohm's law, dc circuits
8. Magnetic fields
9. Biot Savart Law
10. Ampere's Law
11. Magnetostatic energy
12. Faraday's Law
13. Magnetic materials
14. Inductance
15. AC circuits, rms relations, impedance, q factor
16. Displacement current
17. Maxwell's equations

Required Text

Prerequisites

SC/PHYS 1010 6.0 or a minimum grade of C in SC/PHYS 1410 6.0 or SC/PHYS 1420 6.0.

Corequisite

SC/MATH 2015 3.0.

Prior to Fall 2009:
Prerequisites: SC/PHYS 1010 6.0, or a minimum grade of C in SC/PHYS 1410 6.0 or SC/PHYS 1420 6.0. Corequisite: AS/SC/MATH 2015 3.00.

One term. Three credits.

Three lectures hours per week. One tutorial hour per week.
An introduction to the theories of relativity and quantum mechanics. Relativistic concepts of space, time and energy are presented. The quantum nature of radiation and matter is introduced.

Content

1. Einstein's postulates, time dilation, and space contraction
2. Relativistic kinematics
3. Relativistic dynamics
4. Quantization of matter and radiation
5. The Bohr atom
6. Matter waves and the Uncertainty Principle

Required Text

References

R. Resnick and D. Halliday, Basic Concepts in Relativity and Early Quantum Theory (Macmillan, 1992)

Prerequisites

SC/PHYS 1010 6.0, or a minimum grade of C in SC/PHYS 1410 6.0 or SC/PHYS 1420 6.00.

One term. Three credits.

Three lecture hours per week. One tutorial hour per week.

This course is the beginning of a sequence of courses in modern physics, including SC/PHYS 3040 6.0, SC/PHYS 4010 3.0, SC/PHYS 4011 3.0 and SC/PHYS 4040 3.0.

An introductory course in optics covering the following topics: wave nature of light, reflection, refraction, spherical mirrors and lenses, interference, diffraction, polarization, introduction to lasers.

Content

1. Electromagnetic waves
2. Propagation of light, doppler effect
3. Geometrical optics, index of refraction
4. Interference and diffraction
5. Polarization
6. GRATINGS AND INTERFEROMETERS
7. Physics of lasers
8. Atomic spectra
9. Laser cooling

Required Text

References

E. Hecht, *Optics*, Addison Wesley Publications; 1979

Prerequisites

SC/PHYS 1010 6.0 or a minimum grade of C in SC/PHYS 1410 6.0 or SC/PHYS 1420 6.0; MATH 1014 3.0 or equivalent; SC/MATH 1025 3.0 or equivalent.

Prior to Fall 2009:

Prior to Fall 2009: Prerequisites: SC/PHYS 1010 6.0, or a minimum grade of C in SC/PHYS 1410 6.0 or SC/PHYS 1420 6.0; SC/MATH 1014 3.0 or equivalent; SC/MATH 1025 3.0 or equivalent.

One term. Three credits.

Three lecture hours per week. One tutorial hour per week.
Experiments in Electricity and Magnetism and in Modern Optics. Basic methods for analyzing experimental data and understanding statistical and systematic errors.

Content

Experiments:
1. Classical Hall Effect
2. Coulomb’s Law
3. Motion of electrons in electric and magnetic fields
4. Simple DC circuits
5. The Biot Savart Law
6. Earth’s magnetic field
7. Force on a current carrying wire placed in a magnetic field
8. Faraday’s Law
9. RC and RL circuits
10. Electrical resonance
11. Photoelectric effect
12. Fourier analysis
13. Lenses
14. Diffraction of light
15. Michelson Interferometer
16. Microwaves
17. Fabry-Perot Interferometer
18. Polarization of light
19. Acousto-optic effect
20. Spatial profile of a laser beam

Lectures:
1. Precision and accuracy, estimating uncertainties, reporting discrepancies, significant figures
2. General formulae for error propagation
3. Characteristics of a histogram of data – mean, standard deviation and standard deviation of the mean
4. Estimation of random and systematic errors
5. Properties of the Gaussian distribution
6. Addition of errors in quadrature
7. Weighted averages and criterion for rejection of data
8. Least squares fitting – straight line and other functions
9. Statistics of spontaneous decays (e.g. radioactivity)
10. Chi-Squared tests for discrete and continuous variables

Required Text

Prerequisite
SC/PHYS 1010 6.0, or a minimum grade of C in SC/PHYS 1410 6.0 or SC/PHYS 1420 6.0.

Corequisite
SC/PHYS 2020 3.0; SC/PHYS 2060 3.0 recommended.

Degree credit exclusion
SC/PHYS 2211 1.0 and SC/PHYS 2212 1.0.

Two terms. Three credits.

Three laboratory hours per week, one lecture hour every two weeks.
Intermediate classical mechanics, including dynamics of particles and systems of particles. Lagrange's equations and Hamilton's equations.

Content

1. Calculus of variations
2. Lagrangian and Hamiltonian dynamics
3. Central force problem and collisions
4. Dynamics of rigid bodies
5. Coupled oscillations and normal modes
6. Introduction to nonlinear oscillations and chaos

Required Text

Prerequisites

SC/PYS 2010 3.0; SC/MATH 2015 3.0; SC/MATH 2271 3.0.

Prior to Fall 2009:
Prerequisites: SC/PYS 2010 3.0; AS/SC/MATH 2015 3.0; AS/SC/MATH 2271 3.0.

One term. Three credits.

Three lecture hours per week.

Electrostatic and magnetostatic fields, derived from charge and current distributions studied in vacuum and in material media.

Content

1. Vector calculus in Cartesian, cylindrical and spherical polar coordinates
2. Electrostatic fields and electrostatic potentials from discrete and continuous charge distributions in vacuo
3. Work and energy in electrostatics
4. Laplace's equation, solutions to Laplace's equation by separation of variables in Cartesian and spherical geometry
5. Multipole expansions of electrostatic fields
6. Electrostatic fields in dielectric material, bound charge, polarization and displacement fields, linear media
7. Magnetostatic fields from distributed currents in vacuo
8. The Lorentz force law, the Biot Savart law, the magnetic vector potential
9. Multipole expansions of the magnetic vector potential
10. Magnetic fields in matter, bound currents, magnetization, the "auxiliary field", linear media

Required Text

Prerequisites

SC/PYS 2020 3.0; SC/MATH 2015 3.0; SC/MATH 2271 3.0.

Prior to Fall 2009:
Prerequisites: SC/PYS 2020 3.0; AS/SC/MATH 2015 3.0; AS/SC/MATH 2271 3.0.

One term. Three credits.

Three lecture hours per week.
PHYS 3030 3.0 STATISTICAL AND THERMAL PHYSICS

Content

1. Review of classical thermodynamics: three laws, specific heats, adiabatic processes, heat engines
2. Quantum states of weakly interacting particles,
3. Pauli exclusion principle
4. Entropy and probability, Boltzmann’s relation, two-level systems, Boltzmann distribution
5. Distribution of quantum states, subsystems and reservoirs, partition function, free energies, entropy of a two-level system, systems of harmonic oscillators, classical perfect gas, diatomic molecules
6. Equipartition theorem, kinetic theory of gases, transport properties
7. Planck radiation law, Bose and Fermi gases

Required Text

References

Prerequisites

SC/PHYS 2020 3.0; SC/MATH 2015 3.0; SC/MATH 2271 3.0.

Prior to Fall 2009:
Prerequisites: SC/PHYS 2020 3.0; AS/SC/MATH 2015 3.0; AS/SC/MATH 2271 3.0.

One term. Three credits.
Three lecture hours per week.

PHYS 3040 6.0 MODERN PHYSICS

Survey of the basis of contemporary physics: introduction to elementary wave mechanics, and the quantum theory of atoms, molecules, solids, nuclei, elementary wave mechanics and elementary particles.

Content

1. Phenomenological basis of quantization; Planck’s hypothesis; matter waves; particle-wave duality; probabilistic interpretation; uncertainty principle.
2. Schrödinger equation; stationary & non-stationary states; expectation values; 1-D box; finite square well; eigenfunctions and eigenvalues; harmonic oscillator; barrier penetration; 3-D box; operators & commutation relations.
3. Central forces; separation of variables; quantization of angular momentum; intrinsic spin; addition of angular momenta; hydrogen atom; dipole transitions; many-electron atoms; Pauli exclusion principle.
4. Selected topics and applications from the following: molecular, condensed matter, and nuclear physics

Required Text

R. Scherrer, Quantum Mechanics: An Accessible Introduction. Addison-Wesley Publications; 2006

Prerequisites

SC/PHYS 2010 3.0; SC/PHYS 2020 3.0; SC/PHYS 2060 3.0; SC/MATH 1025 3.0, SC/MATH 2015 3.0; SC/MATH 2271 3.0

Corequisite

SC/PHYS 3090 3.0 recommended.

Prior to Fall 2009:
Corequisite: SC/PHYS 3090 3.0 recommended.

Two terms. Six credits.
Three lecture hours per week. One tutorial hour per week.
PHYS 3050 3.0 ELECTRONICS I

Introduction to physical electronics including DC and AC circuit theory and network analysis; bandpass filters; introduction to the p-n junction and semiconductor devices: diodes, DC power supplies, transistors, analysis and design of basic amplifiers, operational amplifiers. With laboratory exercises.

Content
1. Electronic instruments and measurements
2. DC and AC circuit analysis
3. Filters
4. The p-n junction and diodes
5. Diode applications
6. Transistors
7. Switches and amplifiers

Required Text

References

Prerequisites
SC/PHYS 1010 6.0; SC/PHYS 2020 3.0 and SC/PHYS 2211 1.0.

Course Credit Exclusion
LE/SC/ENG 2200 3.0.

Prior to Summer 2013:
Prerequisites: SC/PHYS 1010 6.00; SC/PHYS 2020 3.00 and SC/PHYS 2211 1.00.
Course credit exclusion: SC/ENG 2200 3.00.

One term.
Two lecture hours, three laboratory hours.

PHYS 3090 3.0 METHODS IN THEORETICAL PHYSICS

Methods of classical and modern theoretical physics are introduced to solve problems such as heat diffusion, wave propagation, modes of vibrating strings and membranes, electromagnetic potentials from charge distributions, Schrödinger waves and eigenvalues, and the angular distribution of cosmic radiation.

Content
1. Coordinate systems appropriate for physical symmetries
2. Basic fluid flow: vectors, divergence, gradient, and curl
3. Fluid flow using complex variables
4. Dynamics, forces, and specific differential equations
5. Vibrating strings, quantum waves, and Fourier series
6. Vibrating membranes, heat flow, and Bessel functions
7. Fourier transforms and power spectra, such as for time-varying phenomena
8. Laplace transforms and physical modelling, such as for electric circuits and control analyses

Required Text

Prerequisite
SC/PHYS 2020 3.0.

Corequisite
SC/PHYS 3040 6.0.

One term. Three credits.
Three lecture hours per week.
PHYS 3150 3.0 ELECTRONICS II

The concept of feedback and its use in circuits employing operational amplifiers; analysis/design of such circuits, including amplifiers, filters, oscillators, pulse generators; digital concepts and logic circuits with applications to data manipulation (computers) and storage. Laboratory exercises and project.

Content
1. Feedback principles
2. Characteristics of operational amplifiers
3. Operational amplifier circuits
4. Basic digital concepts
5. Basic digital logic circuits
6. Analogue/digital conversion
7. Microcomputer fundamentals

Required Text
M. Plonus, Electronics and Communications for Scientists and Engineers. Harcourt Academic Press; 2001

References

Prerequisite
SC/PHYS 1010 6.0; and SC/PHYS 3050 3.0 recommended.

Course Credit Exclusion
LE/SC/ENG 2210 3.00.

Prior to Summer 2013:
Prerequisite: SC/PHYS 1010 6.00; and SC/PHYS 3050 3.00 recommended.
Course credit exclusion: SC/ENG 2210 3.00.

One term. Three credits.
Two lecture hours, three laboratory hours.

PHYS 3220 3.0 EXPERIMENTS IN MODERN PHYSICS

A selection of experiments in fluid mechanics, electromagnetism, optics, and atomic, nuclear, and particle physics. Analysis of the data and detailed write-ups are required. One lecture hour which is devoted to techniques of data analysis and three laboratory hours per week.

Required Text

Prerequisite
SC/PHYS 2020 3.0; SC/PHYS 2060 3.0; SC/PHYS 2213 3.0.

Corequisite
SC/PHYS 3040 6.0.

Course Credit Exclusion
SC/PHYS 3210 6.0.

One term. Three credits.

One lecture hour per week. 4 experiments are performed through the semester. These labs each normally take 3 to 6 hours of laboratory time in addition to reviewing the laboratory manual and other background material in advance of the lab.
The course covers the principles and implementations of miniaturised sensors and actuators in a range of physical domains, such as optical, magnetic, thermal, and mechanical systems. Examples include electronic cameras, micro-electro-mechanical systems, thermal microsystems, and display technologies.

Content

1. Introduction: Introduction to microsystems; general principles of transduction; definitions

2. Fabrication & Micromachining Technology: Overview of CMOS technology relevant to microsystems, materials properties, micromachining technology

3. Mechanical Microsystems: Overview of mechanics and mechanical properties of materials; mechanisms of mechanical transduction; mechanical sensors (e.g. accelerometer, gyroscope, pressure sensor); mechanical actuators (e.g. electrostatic micromotors, micromirrors)

4. Optical Microsystems: Optical detection; optical sensors (CCD, CMOS, non-silicon); optical actuators – displays (LCD, field emission, LED, organic)

5. Radiation Detection: Interaction of radiation (e.g. X-ray, ionizing radiation) with matter; radiation sensors (large area, space applications)

6. Thermal Microsystems: Review of heat transfer mechanisms; transduction principles; thermal sensors (junction bases sensors, thermo-mechanical and –resistive sensors); thermal imaging (IR image sensors); thermal actuators (e.g. Peltier cooler)

7. Magnetic Microsystems: Magnetic sensors (magneto resistive, magnetostrictive, Hall effect); magnetic actuators (e.g. RF passive components, read/write heads)

8. Chemical and Fluidic Microsystems: Chemical sensors (e-nose); fluidic sensors (flow sensors)
PHYS 4010 3.0 QUANTUM MECHANICS

Content

- Postulates of quantum mechanics
- Operators
- Expectation values
- Uncertainty
- Time-evolution operators
- Particle in a box
- Bohr correspondence principle
- Dirac notation
- Hilbert space: linearity, inner product, norm, completeness
- Hermitian operators: reality of eigenvalues, orthogonality of eigenfunctions
- Mathematical aside: fourier transforms
- Momentum representation
- Commutators
- General uncertainty relations
- Time development: wavefunctions, expectation values, Ehrenfest theorem
- Wave packets: gaussian wave packet
- Conservation laws: energy, momentum, angular momentum, parity
- Translation operator, rotation operator, parity operator
- Harmonic oscillator – creation, annihilation operators
- Tunneling: transmission resonances
- WKB approximation: connection formulae, Airy functions
- Angular momentum: commutation relations, $J_+,$ and J_-
- Spherical harmonics
- Hydrogen atom
- Variational method
- Matrix mechanics
- Spin
- Addition of angular momenta
- Perturbation theory: time-independent, degenerate, time-dependent
- Relativistic quantum mechanics: Dirac equation, Klein-Gordon equation
Application of quantum mechanics to atomic and molecular structure. One-electron systems, many electron atoms, Hartree-Fock approximation, fine structure, hyperfine structure, atom-laser interactions.

Content

1. Two-particle systems: centre-of-mass and internal motion
2. Spin of the electron; addition of angular momenta; spin-orbit interaction
3. Time-independent perturbation theory, non-degenerate and degenerate, with applications to atomic physics
4. Variational methods, with applications to atomic physics
5. Identical particles: Permutation operators; symmetrization postulate; exchange terms; Pauli exclusion principle
6. Atomic structure: (simple) screened nucleus model; Hartree self-consistent field model
7. Fine structure of atomic spectra: relativistic kinetic energy; L S interaction; Darwin term
8. Hyperfine structure of atomic spectra: nuclear volume effect; nuclear quadrupole moment; nuclear magnetic moment
10. Molecular spectra: Born-Oppenheimer approximation; translational, electronic vibrational and rotational motion; band spectra
11. Quantum theory of the electromagnetic field: creation and annihilation operators; field operators; number states
12. Atom-photon interaction: multipole hamiltonian
13. Time-dependent perturbation theory: transitions
14. First-order radiation processes: absorption, stimulated and spontaneous emission; Einstein A and B coefficients; applications to the laser and cooling of atoms
15. Higher-order radiation processes: two-photon absorption, emission (stimulated and spontaneous), and scattering (ordinary and stimulated; Rayleigh and Raman)
16. Interaction of a 2-level atom with a single intense field mode

Reference

R. Liboff, *Quantum Mechanics*. Addison Wesley; 1998

Required Text

Prerequisite

SC/PHYS 4010 3.0.

One term. Three credits. Three lecture hours per week.
Physics 4020 3.0 Electromagnetics II

Time–dependent electric and magnetic fields, Maxwell's differential equations in linear, isotropic, homogeneous conductors and dielectrics; the radiation and transmission of electromagnetic energy; relativistic transformations; scalar diffraction theory.

Content

1. Electromagnetic induction; Maxwell's equations; boundary conditions
2. Conservation laws for energy and linear and angular momentum in electrodynamics; Poynting's theorem; Maxwell stress tensor
3. Electromagnetic wave propagation in vacuum; in linear dielectrics; in conductors
4. Absorption and dispersion in conductors and in dielectrics
5. Electromagnetic wave transmission in wave guides; co-axial transmission lines
6. Potentials and fields; gauge transformations; retarded potentials; Lienard-Wiechert potentials
7. Electromagnetic radiation; electric dipole radiation; magnetic dipole radiation; radiation from an arbitrary source; radiation reaction
8. Special relativity; relativistic mechanics; Minkowski space-time; four vectors and four tensors in space-time; relativistic electrodynamics; Maxwell's equations in covariant form.

Required Text

Prerequisites

SC/PHYS 2040 3.0; SC/PHYS 3020 3.0.

One term. Three credits.

Three lecture hours per week.

Physics 4040 3.0 Elementary Particle Physics

The properties of the fundamental particles (quarks and leptons), and the forces between them are studied. Topics include the interactions of particles with matter, symmetry principles and experimental techniques.

Integrated with GS/PHYS 5040 3.0.

Content

1. Nuclear phenomenology: properties of nuclei, masses and sizes of nuclei, stability and instability of nuclei; some nuclear models
2. Nuclear radiation: alpha decay and barrier penetration, beta decay and intro to weak interactions, gamma decay
3. Energy deposition in media: energy loss of charged particles, interaction of photons, particle detectors and accelerators
4. Conservation laws and Invariance principles: electric charge, baryon number, particles and antiparticles, isospin, P.C.T. conservation and CP violation
5. Standard Model: quarks and leptons, quark content of mesons and baryons, symmetries and symmetry breaking, colour force, deep inelastic scattering; structure functions
6. Beyond the standard model (time permitting)

Required Text

References

B. Martin, G. Shaw, *Particle Physics*. John Wiley and Sons; 2006
W. Williams, *Nuclear and Particle Physics*. Oxford University Press; 1991

Prerequisites

SC/PHYS 2040 3.0; SC/PHYS 4010 3.0.

One term. Three credits.

Three lecture hours per week.
The structural, mechanical, thermal, electrical and magnetic properties of crystalline solids are studied.

Integrated with GS/PHYS 5100 3.0.

Content
1. Molecular forces and interatomic bonding
2. Crystal structure, diffraction and the reciprocal lattice
3. Elastic constants and elastic waves: continuum approach
4. Phonon and lattice vibrations: monatomic and diatomic lattices; local phonon modes; thermal properties of insulators; lattice specific heat, thermal conductivity; thermal expansion
5. Free electron theory of metals: Fermi surface; Fermi–Dirac distribution function; specific heat of metals; electrical conductivity; thermal conductivity, band theory of solids: Kronig–Penny model; effective mass; conductors, insulators, semi–metals, and semi–conductors; holes; magnetic properties
6. Superconductivity: BCS theory (Introduction only)

Required Text

References
J. Blakemore, Solid State Physics, 2nd ed. Saunders; 1974

Prerequisites
SC/PHYS 3030 3.0; SC/PHYS 4010 3.0.

One term. Three credits.

Three lecture hours per week.
PHYS 4120 3.0 GAS AND FLUID DYNAMICS

Fundamental laws; conservation of mass, momentum and energy, vortex motion; incompressible, compressible and viscous flows, turbulent flow, surface waves.

Content

1. Introduction: basis of continuum model, pressure isotropy, compressibility, viscosity
2. Mass, momentum, and energy conservation equations
3. Hydrostatics
4. Velocity potential, vortex motion, stream function
5. Potential flows of incompressible fluid in two and three dimensions
6. Viscous incompressible flows: Navier–Stokes equation, solutions for pipe and channel flows, laminar and turbulent boundary layers
7. Nonviscous compressible flows: shock waves, expansion flows

Required Text

Prerequisites

SC/PHYS 2010 3.0 or LE/SC/EATS 2470 3.0; SC/MATH 2015 3.0; SC/MATH 2271 3.0.

Prior to Summer 2013:
Prerequisites: SC/PHYS 2010 3.00 or SC/EATS 2470 3.00; AS/SC/MATH 2015 3.00; AS/SC/MATH 2271 3.00.

Prior to Fall 2009:
Prerequisites: SC/PHYS 2010 3.00 or SC/EATS 2470 3.00; SC/MATH 2015 3.00; SC/MATH 2271 3.00.

One term. Three credits.

Three lecture hours per week.
Department of Physics and Astronomy
128 Petrie Science and Engineering Building (PSE)
4700 Keele Street, Toronto, ON M3J 1P3
Tel: 416-736-5249 Fax: 416-736-5516
www.biophysics.yorku.ca

Departmental Chair: M. McCall
Biophysics Program Director: M. McCall
Graduate Program Director: W. Taylor
Administrative Assistant: M. Caplan
Undergraduate Program Assistant: L. O’Brien

FACULTY

<table>
<thead>
<tr>
<th>Name</th>
<th>Office</th>
<th>Ext</th>
<th>Research Field</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bartel, N.</td>
<td>331 PSE</td>
<td>55424</td>
<td>AA, EASE</td>
<td>bartel@yorku.ca</td>
</tr>
<tr>
<td>Bergevin, C</td>
<td>240 PSE</td>
<td>60356</td>
<td>B</td>
<td>cberge@yorku.ca</td>
</tr>
<tr>
<td>Bhadra, S. **</td>
<td>235 PSE</td>
<td>22470</td>
<td>HEP</td>
<td>bhadra@yorku.ca</td>
</tr>
<tr>
<td>Caldwell, J.</td>
<td>332 PSE</td>
<td>77721</td>
<td>AA, EASE</td>
<td>caldwell@nereid.sal.phys.yorku.ca</td>
</tr>
<tr>
<td>Delaney, P.</td>
<td>329 PSE</td>
<td>77763</td>
<td>AA</td>
<td>pdelaney@yorku.ca</td>
</tr>
<tr>
<td>De Robertis, M.</td>
<td>326 PSE</td>
<td>77761</td>
<td>AA</td>
<td>mmdr@yorku.ca</td>
</tr>
<tr>
<td>Hall, P.</td>
<td>337 PSE</td>
<td>77752</td>
<td>AA</td>
<td>phall@yorku.ca</td>
</tr>
<tr>
<td>Hessels, E.</td>
<td>201 PSE</td>
<td>33040</td>
<td>AMO</td>
<td>hessels@yorku.ca</td>
</tr>
<tr>
<td>Horbatsch, M. **</td>
<td>229 PSE</td>
<td>77747</td>
<td>AMO, HEP</td>
<td>marko@yorku.ca</td>
</tr>
<tr>
<td>Hornsey, R.</td>
<td>3047 CSE</td>
<td>33265</td>
<td>B, EASE</td>
<td>hornsey@cs.yorku.ca</td>
</tr>
<tr>
<td>Jerzak, S.</td>
<td>223 PSE</td>
<td>44102</td>
<td>CCM</td>
<td>jerzak@yorku.ca</td>
</tr>
<tr>
<td>Johnson, M.</td>
<td>322 PSE</td>
<td>33747</td>
<td>AA</td>
<td>matthewj@yorku.ca</td>
</tr>
<tr>
<td>Kirchner, T. **</td>
<td>228 PSE</td>
<td>33695</td>
<td>AMO</td>
<td>tomk@yorku.ca</td>
</tr>
<tr>
<td>Koniuk, R.</td>
<td>219 PSE</td>
<td>66480</td>
<td>HEP</td>
<td>koniuk@yorku.ca</td>
</tr>
<tr>
<td>Kumarakrishnan, A.</td>
<td>252 PSE</td>
<td>77755</td>
<td>AMO</td>
<td>akumar@yorku.ca</td>
</tr>
<tr>
<td>Lewis, R.</td>
<td>223 PSE</td>
<td>22759</td>
<td>HEP</td>
<td>randy.lewis@yorku.ca</td>
</tr>
<tr>
<td>McCall, M.</td>
<td>334 PSE</td>
<td>33773</td>
<td>AA</td>
<td>mcall@yorku.ca</td>
</tr>
<tr>
<td>Menary, S. *</td>
<td>237 PSE</td>
<td>22982</td>
<td>HEP</td>
<td>menary@yorku.ca</td>
</tr>
<tr>
<td>Quine, B.</td>
<td>256 PSE</td>
<td>33483</td>
<td>EASE</td>
<td>bquine@yorku.ca</td>
</tr>
<tr>
<td>Storry, C.</td>
<td>253 PSE</td>
<td>77756</td>
<td>AMO</td>
<td>codys@yorku.ca</td>
</tr>
<tr>
<td>Taylor, W.</td>
<td>239 PSE</td>
<td>77758</td>
<td>HEP</td>
<td>taylorw@yorku.ca</td>
</tr>
<tr>
<td>van Wijngaarden, W.</td>
<td>247 PSE</td>
<td>77750</td>
<td>AMO</td>
<td>wlaser@yorku.ca</td>
</tr>
</tbody>
</table>

RESEARCH FIELDS

<table>
<thead>
<tr>
<th>AA</th>
<th>Astronomy & Astrophysics</th>
<th>CCM</th>
<th>Chemical & Condensed Matter Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMO</td>
<td>Atomic, Molecular & Optical Physics</td>
<td>EASE</td>
<td>Earth, Atmospheric, Space & Engineering Physics</td>
</tr>
<tr>
<td>B</td>
<td>Biological Physics</td>
<td>HEP</td>
<td>High Energy & Particle Physics</td>
</tr>
</tbody>
</table>