

Investigation of cell mechanics using Micro/Nanodevices : some examples

C. VIEU CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France, Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France. (<u>cvieu@laas.fr</u>)

Problematic of Cell mechanics measurements

Outline

Problematic Investigating Migration Mechanism Primary cells : Macrophages

> Micro Devices for cell migration investigation Review of the State-of-the-art

Micro channel equipped with micro pillar force sensors

Device fabrication Device characterization Macrophage migration inside the device Force amplitude Force orientation

3D scaffold

Scaffold fabrication Scaffold characterization Macrophage migration inside the scaffold Mechanical properties of the scaffold Stress and Force evaluation

Outline

Problematic Investigating Migration Mechanism Primary cells : Macrophages

Human Macrophages

Immune role of macrophages

Human Macrophages

ROLE OF MACROPHAGES IN TUMORAL CONTEXT

Specific force patterns

Outline

Problematic

Investigating Migration Mechanism Primary cells : Macrophages Migration modes : From amoeboid to Mesenchymal Mechanical forces involved

> Micro Devices for cell migration investigation Review of the State-of-the-art

Cell forces measurements

Wrinkling method

Deformable object : Silicone rubber substrata Cell : Fibroblast Force : 10 nN/μm Harris et al, Science, 1980

Traction Force Microscopy (2D,3D)

Deformable object : Elastic hydrogel matrices Cell : NIH 3T3 Stress : 2 kPa Legant et al, Nature methods, 2010

TFM under induced Spatial confinement

Deformable object : Polyacrylamide gels Cell : dHL60 Stress : 800 Pa Yip et al, Integrative biology, 2015

State-of-the-art : Available tool to measure cell-generated forces

Deformable object : PDMS Pillars Cell : Smooth muscle cell Force : 10 nN Tan et al, PNAS, 2003

From 2D to confining devices

Deformable object : PDMS Pillars Cell : NIH-3T3 and HOS cells Force : 4 nN Raman et al, PNAS, 2013

Inputs of 3D technologies

Deformable object : µ-Flower Cell : MEFs cell Force : quelques nN Marelli et al, Lab on a Chip, 2013

Deformable object : Beam of 3D structure Cell : chicken cardiomyoc Force : 20 nN Klein et al, advanced materials, 2010

From static to dynamical cell force measurements

Deformable object : Beam of 3D structure Cell : SH-SY5Y, MCF7 and MDA-MB-231 Cell Force : 1.5 μN Lemma et al, advanced materials, 2017

Objectives

Problematic Investigating Migration Mechanism

→ Primary Human Macrophages Migration
→ Validation of dedicated Microdevices
→ Dynamical Cell force measurements
→ Spatial confinement
→ Optical Imaging
→ 3D

Micro channel equipped with micro pillar force sensors

3D scaffold

Outline

Problematic

Investigating Migration Mechanism Primary cells : Macrophages Migration modes : From amoeboid to Mesenchymal Mechanical forces involved

> Micro Devices for cell migration investigation Review of the State-of-the-art

art Micro channel equipped with micro pillar force sensors

Device fabrication Device characterization Macrophage migration inside the device Force amplitude Force orientation

Aspect of the Fluidic device

Device fabrication

Device characterisation

Pillar stiffness estimated with beam theory

Pillar stiffness measured by AFM

Typical result

 $K_{mean} = 7,1 \text{ nN/}\mu\text{m} (\text{Sd} : 1.9 \text{ nN/}\mu\text{m})$

Macrophage Migration inside pillar-equipped Micro-channels

- \rightarrow Primary monocytes derived in macrophages.
- \rightarrow After 48h.
- → 5% CO2
- → 37°C
- \rightarrow Immersion inside culture medium (no flux)

Migration direction

Fixed macrophages observed by Scanning Electron Microscope (SEM)

12 µm

12 μm

10 µm

10 µm

Fixed macrophages observed by Scanning Electron Microscope (SEM) and fluorescent microscopy

12 µm

12 µm

10 μm

F-actin/Vinculin/Nucleus

10 µm

Nucleus shape under confined migration

1<mark>0 μ</mark>m

Characterization of top pillar displacement

Channel width 12 μm

Maximal forces

Maximal Forces _____ In two cellular regions

 \rightarrow Confinement independent (6 or 12 µm channel width)

Macrophages applied maximal forces at cell edges (Front and Back).

Force orientations

Confinement

Van Goethem et al, 2010, Journal of immunology Heuzé et al, 2013, Immunological reviews

Microfluidic Approach : Main results and conclusions

Problematic Investigating Migration Mechanism

- \rightarrow Primary Human Macrophages Migration
- ightarrow Validation of dedicated Microdevices
- \rightarrow Dynamical Cell force measurements
 - \rightarrow Spatial confinement
 - \rightarrow Optical Imaging
 - →3D

Micro channel equipped with micro pillar force sensors

→ Validation of a dedicated Micro-device for the investigation of human macrophage migration under Spatial confinement enabling dynamical cell force measurements with a limit of detection of 64 pN
→ Local forces are higher at cell edges than around the nucleus
→ Local migration forces are in the order of 1 nN

- ightarrow Under strong confinement the nucleus is deformed
- ightarrow Under strong confinement cell redirects forces from inwards to

outwards

 \rightarrow Cell forces exerted against micro-channel edges ?

10 µm

A new approach enabling global mechanica stress measurement under spatial confinement and

 \rightarrow Cell forces exerted against micro-channel edges ?

10 µm

A new approach enabling global mechanical stress measurement under spatial confinement and

3D Landscape

3D scaffold

Scaffold fabrication Scaffold characterization Macrophage migration inside the scaffold Mechanical properties of the scaffold Stress and Force evaluation

Outline

Problematic

Investigating Migration Mechanism Primary cells : Macrophages Migration modes : From amoeboid to Mesenchymal Mechanical forces involved

> Micro Devices for cell migration investigation Review of the State-of-the-art

art Micro channel equipped with micro pillar force sensors

Device fabrication Device characterization Macrophage migration inside the device Force amplitude Force orientation

3D scaffold

Scaffold fabrication Scaffold characterization Macrophage migration inside the scaffold Mechanical properties of the scaffold Stress and Force evaluation

Scaffold Fabrication

1. 2-Photons optical lithography in photosensitive resist (IP-Dip)

3. Critical point drying for limiting collapse

Scaffold Characterization

Scaffold Characterization

Macrophage Invasion

- → Filamentous actin all along a supporting beam: "Long contact"
- → Filamentous actin around part of a beam : "wrapping contact"

20 µm

Macrophage 3D path

 $V = 7.2 \ \mu m/h$

Beam displacement (in-plane)

Beam displacement (in-plane)

Beam displacement (in-plane) without cell

Beam displacement (in-plane)

Mechanical properties of the scaffold : E^* , v^* .

IP-DIP Resist $\rho = 1280 \text{ kg/m}^3$ $E= 880 \text{ Mpa}^*$ $\nu = 0.45$

Jayne et al, 2018, Advanced materials technologies.

Description of the scaffold as a continuous elasctic isotropic material

Mechanical Stress induced by Macrophage 3D migration

Perspective : Create Gradients !

Micro channel equipped with micro pillars force sensor

Channel width variations

GRADIENT OF SPATIAL CONFINEMENT

3D Micro scaffold

Scaffold period or exposure parameters variations

- GRADIENT OF SPATIAL CONFINEMENT
 - GRADIENT OF RIGIDITY

Acknowledgements : Emma Desvignes

→ L'équipe ELiA

Julie Foncy Aurore Esteve Justine Creff Kayum Jimenez Hélène Cayron Maxime Sahun Emmanuelle Trevisiol Etienne Dague Laurent Malaquin Aline Cerf Mariel Cano Jorge Lin Yang

→ Moran Mirabal Group

Jose Moran-Mirabal Mouhanad Babi

Т

→ L'équipe MDP

Marion Portes Natasha Escallier Solène Accarias Myriam Ben Neji Karine Pingris & toute l'équipe

→ Plateforme CBI Thomas Mangeat Amsha Proag

→ TEAM Adrian Laborde Franck Carcenac Laurent Mazenq Fabien Mesnilgrente Lucie Seveno

→ Plateforme Caractérisation Charline Blatché Sandrine Assié-Souleille

→ Ma famille

Florence Desvignes André Desvignes Lisa Desvignes Martin Desvignes Françoise Gravil Jean-Pierre Gravil

→ Mon conjoint Sébastien Gravil

With the support of

Spatial confinement

Mcgregor, AL et al, 2016, Current Opinion cell biology

Role of the nucleus under spatial confinement

Thiam HR et al, 2016, Nature Communications

Influence of Nuclear rigidity

Davidson et al, 2014, Cellular and Molecular Bioenginering.

Nuclear rupture during confined migration

Denais, CM et al, Science, 2016

Guillut C et al, 2014, nature cell biology Mcgregor, AL et al, 2016, Current Opinion cell biology

LAAS-CNRS

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

Podosome 2D : Structure subcellular of the macrophage

- \rightarrow Adhesion
- \rightarrow Degradation
- \rightarrow Mecano sensor
- \rightarrow Involved in migration

LAAS-CNRS

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS