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WARNING:

Please be aware that some example images are
shown that may cause seizures in individuals with
pattern sensitive epilepsy, and visual discomfort in

others. Do not proceed with viewing this
presentation if these are a concern for you.

This applies to slides/pages 32 and 37



Brains are intricate networks of vast numbers of
neurons

* Brains are highly inhomogeneous, densely
interconnected networks of electrically active neurons

e Mammalian brains have

« anywhere from ~ 3 X 10’ (naked mole rat) to as
many as ~ 3 X 10!! neurons (African elephant)
« ~100 to 1,000 different neuronal types
* dozens of distinct anatomical regions
* which can themselves have subareas

 Each individual neuron is in turn comprised of many
different components and connects to ~1,000 to
10,000 other neurons

* How do we begin to model, let alone understand,
such systems?

https://training.seer.cancer.gov/anatomy/nervous/tissue.htmi



Do we really need all of this complexity?
= m&% panilest)

One way: pretend the brain is in fact
homogeneous with very simple neurons and
see how far you can go!

How theorists look at neurons
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Abbott, 1999

https://medium.com/chingu/neuron-explained-
using-simple-algebra-example-b18f5e280845



Neurons communicate via

propagating electrical signals

18th cent: Galvani and his wife
observed that frog’s legs contracted
when stimulated by electricity (led to
the first battery by Volta and to
Frankenstein by Shelley!)

19th cent: discovery of cells, voltage
across cell membrane, action
potential (speed determined by von
Helmholtz, who also studied vision)

Action Potential
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Initial neuronal models included dynamic circuit ana
static feedforward models
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Initial neuronal models included dynamic circuit and
static feedforward models
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e 1907: first circuit model of action
potentials by Lapicque V) = — V) + 1)

e 1943: first model of neuronal
computations by McCullough and
Pitts

»@ Y € {0,1}

f(x) = Heav(x)

Wl=W2=W3=...=WN
(fixed)



Initial neuronal models included dynamic circuit ana
static feedforward models
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e 1943: first model of neuronal
computations by McCullough and Pitts &

V() = — V(t) + 1(v) .
* 1952: Hodgkin-Huxley model (1963: S
Nobel)
e Much more accurate model of action
potential
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Initial neuronal models included dynamic circuit ana
static feedforward models
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Initial neuronal models included dynamic circuit ana

static feedforward models
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potential
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Initial neuronal models included dynamic circuit ana
static feedforward models
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Mean-field models allow for tractable equations
that capture large-scale dynamics

1907: first circuit model of action
potentials by Lapicque

1943: first model of neuronal
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computations by McCullough and Pitts

1952: Hodgkin-Huxley model (1963:
Nobel)

1956: Neural fields by Beurle

e 1972, 1973: Wilson-Cowan
equations include inhibition

V() = — V(t) + 1(v)
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Mean-field models allow for tractable equations
that capture large-scale dynamics

1907: first circuit model of action
potentials by Lapicque

1943: first model of neuronal
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1952: Hodgkin-Huxley model (1963:
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Neural field models approximate cortex as a
continuum of neurons

Brain surface
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Neural field models approximate cortex as a
continuum of neurons
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J. aﬂ(-x) — aaﬂKﬁ(x)

ou(x, 1)
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u - excitatory ov(x, 1)
e T
v - inhibitory ot

= — u(x, 1) + f,(J,,(x) * u(x, 1) — J,(x) * v(x, 1))

Je,i(1t) =

1 +exp(—4(u—0,,)

= —v(x, 1) + fi(Ji(0) *u(x, 1) — J;;(x) * v(x, 1))

* - spatial convolution



But... what about those static
feedforward models?
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1949: Hebbian learning - synaptic
weights change to allow for learning

1958: perceptron by Rosenblatt

 Mark | perceptron machine
(compare: Blue/Human Brain
Project)

1969: Need more than one layer of
“neurons” (XOR - Minsky and Papert) @ f(x) = Heav(x)

Wl=W2=W3=...=WN
(fixed)
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But... what about those static
feedforward models?

1943: McCullough-Pitts model

1949: Hebbian learning - synaptic
weights change to allow for learning

— TN B Tee - L
: — e — e ——— . —— . \
'ﬁ WIF SN e e ex I GED DRSD D N BT DT D Vv e D

1958: perceptron by Rosenblatt

-

 Mark | perceptron machine
(compare: Blue/Human Brain
Project)

1969: Need more than one layer of
“neurons” (XOR - Minsky and Papert)




Multilayered (“deep”) perceptron networks prove
more practical in applications

 1967: Supervised learning on
“deep” feedforward networks
(multilayer perceptrons) by
lvakhnenko and Lapa
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Multilayered (“deep”) perceptron networks prove
more practical in applications

e 1967: Supervised learning on
“deep” feedforward networks
(multilayer perceptrons) by
lvakhnenko and Lapa
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* 1986: Backpropagation to update i
weights by Rumelhart, Hinton & Backprop AW o 2L ah—e h
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Convolutional networks borrowed further
from neurobiological findings

e 1967: Supervised learning on
“deep” feedforward networks
(multilayer perceptrons) by
lvakhnenko and Lapa

 1986: Backpropagation to update
weights by Rumelhart, Hinton &

Willlams

e 1989: Convolutional neural networks
with backpropagation by LeCun
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Convolutional networks borrowed further
from neurobiological findings

e 1967: Supervised learning on
“deep” feedforward networks
(multilayer perceptrons) by
lvakhnenko and Lapa

 1986: Backpropagation to update
weights by Rumelhart, Hinton &

Willlams

e 1989: Convolutional neural networks
with backpropagation by LeCun




Deep networks can be made to be much more

e Realistic?
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Deep networks can be made to be much more
biologically realistic
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Deep networks can be made to be much more
biologically realistic
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Deep networks can be made to be much more
biologically realistic

Brain surface X
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Feedback alignment: AWy « Be - x, where B is a random matrix
(with entries uniformly drawn from, e.g., [-0.5, 0.5])

Lillicrap...Akerman, 2016



Spatial resonance: Certain static visual
stimuli can cause seizures and discomfort

max

e (A) Periodic patterns with certain
spatial frequencies can cause epileptic
selzures

e (B) In those without epilepsy, the same
stimuli can cause headaches, illusions,
and general aversion and discomfort

e (C) More complicated images min
composed of many wavenumbers can 0.1
also cause discomfort

Spatial frequency/cycles deg™

Fernandez & Wilkins, 2008



Oscillatory patterns are observed
IN response to the stimuli

If you have a visual epilepsy, please look
away for the next slide, as an example
stimulus will be shown



Oscillatory patterns are observed
IN response to the stimuli
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e Striped patterns, such as sine- and e Screen doors, copper mesh, corduroy
sguare-wave gratings trigger such seizures could all trigger epileptiform activity

" Bickford & Keith, 1953




Oscillatory patterns are observed
IN response to the stimuli
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iInduce the seizures case of visual discomfort

" Bickford & Keith, 1953
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Oscillatory patterns are observed
IN response to the stimuli
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Neural fields provide a natural starting point

e |arge-scale dynamic activity suggests a population-level mean-field
approach such as neural fields

Je i) = Jaﬂ(-x) = aaﬂKﬂ(x)
D = ) U0 ) = ) () " exp(H — b
ov(x, 1)
T v = —v(x, 1) + f,(J,,(x) *ulx, t) — J.(x) *v(x, 1))

S

(aee)
dej
Qi )

u - excitatory
v - Inhibitory




Neural fields provide a natural starting point

e |arge-scale dynamic activity suggests a population-level mean-field
approach such as neural fields

q/\ S(x; k)
ou(x, 1)
= — 1) + i) ¥ ux, 1) = T (0) % vx 1) + g S k)

—v(x, 1) + f,(J,,(x) Fulx, 1) —J(x) Fv(x, 1) + g - r Sx; k))

. 2tk x
u - excitatory S(x; k) = cos ~
v - inhibitory



Neural fields provide a natural starting point

e |arge-scale dynamic activity suggests a population-level mean-field
approach such as neural fields q
ou(x, 1)
- = —ulx, 1) +f,(J,(x) Fulx, 1) —J,(x) *v(x, 1) + g S(x; k))

—v(x, 1) + f,(J,,(x) Fulx, 1) —J(x) Fv(x, 1) + g - r Sx; k))

u - excitatory
v - Inhibitory




Resonant oscillations suggest Turing-Hopf
bifurcation
* Hopf bifurcation: changing a x

parameter results in the appearance of
oscillations

* By adjusting the spatial profiles of the e
Gaussian kernel, the steady state of Qoo eemaae formation | ___________.._.
the system can be lost to oscillations ’
with at a nonzero wavenumber, m~*
(Turing-Hopf bifurcation) steady state stable

* Then, presumably, the system will be
more sensitive to stimuli with those
wavenumbers



Resonant oscillations suggest Turing-Hopf
bifurcation

* Hopf bifurcation: changing a parameter ce
results in the appearance of oscillations

By adjusting the spatial profiles of the
Gaussian kernel, the steady state of the
system can be lost to oscillations with

at a nonzero wavenumber, m™ (Turing-
Hopf bifurcation)

a. = pattern pattern
% formation formation
a

steady state stable

 Then, presumably, the system will be
more sensitive to stimuli with those =0

wavenumbers




Resonant oscillations suggest Turing-Hopf
bifurcation

Linearize system, look for solutions that are periodic in
space and time (1, v ~ e"*'e"™) ee

End up with simple 2x2 linear system that will be a
function of the wavenumber m

Find when the eigenvalue is purely imaginary only at a

nonzero wavenumber m* App= . ______bpatern | pattern
L% formation formation

Since eigenvalues are givenby A = T % \/T2 — 4D
(I’ = Trace, D = Det), sufficient if

steady state stable

o T =0atm = m™* and negative elsewhere

D > 0 everywhere g=0

 Then A = iy at m*



Resonant oscillations suggest Turing-Hopf
bifurcation

Linearize system, look for solutions that are periodic in
space and time (i, v ~ e'*e"™

End up with simple 2x2 linear system that will be a

0.10 . Determinant
function of the wavenumber m '
== Trace
Find when the eigenvalue is purely imaginary only at a
nonzero wavenumber m* 0 é 1 lO 1 '5 20= -
Stable m Stable m
Since eigenvalues are givenby A = T % \/T2 — 4D 2010
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« D > 0 everywhere
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Resonant oscillations suggest Turing-Hopf
bifurcation

Linearize system, look for solutions that are periodic in
space and time (i, v ~ e'*e"™

End up with simple 2x2 linear system that will be a

. 0.10 . Determinant
function of the wavenumber m '
== Trace
Find when the eigenvalue is purely imaginary only at a
nonzero wavenumber m* 0 é 1'0 1'5 20= -
Stable m Stable m
Since eigenvalues are givenby A = T *+ \/T2 — 4D 2010
(I' = Trace, D = Det), sufficient if ' mx:
elmaginary eigenvalues
o T =0atm = m™* and negative elsewhere -0.20\. *Destabilize at this mode

« D > 0 everywhere

 Then A = iy at m*



Poor-person’s bifurcation diagram: simulate
OVer a g, K range and probe variance
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Poor-person’s bifurcation diagram: simulate
OVer a g, K range and probe variance
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Inverting lower boundary to find sensitivity of network to different
wavenumbers results in similar resonance as In experiments
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Inverting lower boundary to find sensitivity of network to different
wavenumbers results in similar resonance as In experiments
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Neural field model in 1 spatial dimension easier to analyze
and produces a large subset of spatiotemporal dymnamics
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Neural field model in 1 spatial dimension easier to analyze
and produces a large subset of spatiotemporal dymnamics
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In 1D, we obtain similar resonance / sensitivity
as with 2-D model
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We generally obtain standing-wave patterns in 1D
that look similar to those obtained in 2D
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We generally obtain standing-wave patterns in 1D
that look similar to those obtained in 2D

Stimulus-free

Stimulus on



We generally obtain standing-wave patterns in 1D
that look similar to those obtained in 2D

Stimulus-free  Time

Stimulus on




Natural spatial frequency = 5, resonant spatial
frequency = 10 due to alternating pattern

0.10 - Determinant
ms= Trace
0 | | | !
5 10 15  20=m | |
Stable m Stable m T o
-0.10 - |
elmaginary eigenvalues
-0.20. *Destabilize at this mode
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In 1D, we can explore further by producing 2-parameter
bifurcation diagrams near the dynamic instability

____________________________________
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In 1D, we can explore further by producing 2-parameter
bifurcation diagrams near the dynamic instability

k=12
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In 1D, we can explore further by producing 2-parameter
bifurcation diagrams near the dynamic instability

k=12

% formation formation

steady state stable

k=10




Curves are quadratic for k=10, linear for k=10!

.k=.12 k=5(=m%)

7.375
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Theoretical curves very closely match numerically-
computed curves near instability

 Theory | N\

' m— N UMerics
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Since k=10 curve is linear, fits within quadratic curves.
Hence, more sensitive near onset to k=10
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Pattern formation summary

Spatial resonances: oscillatory neural responses to static
images with dominant frequencies in a narrow band

Spatially extended neural field model captures resonance when
placed near Turing-Hopf bifurcation

2-D and 1-D networks show similar behaviors
» Both: resonances near those found psychophysically

Mathematically show that network more sensitive to stimuli
with twice the natural frequency



Does the visual system implement a deep
network”

One class of deep network models that the
brain is hypothesized to implement are
predictive hierarchical models

. Cold Q Q
’ .. Spring
\ P Harbor
k] ]

\ Y - Laboratory

THE PREPRINT SERVER FOR BIOLOGY

Preprint:

doi: https://doi.org/10.1101/2021.01.15.426915

I Dayan ... Zemel, Neur. Comp., 1995
2 _Rao & Ballard, Nat. Neur., 1999



Does the visual system implement a predictive
hierarchical model of the world?

* Predictive hierarchical models (e.g., Helmholtz machines,
Rao & Ballardz) comprise a broad class of models of how

the visual system is hypothesized to function. Briefly: e hiases
* Higher brain areas make predictions about incoming 5

stimuli based on prior experience (possibly evolutionary) 2 OO0 7?5 QOO

recognition  ¢{7 | | 6% generative

weights \ : weights
1 00L0O0
input

* These predictions are compared to the incoming stimuli

Helmholtz machine sc:hematic1

L L L

au EEENEEENEE

. . . . . op-down Brain surface
* The predictions, comprising the internal model of the reditions > 2
world, are updated based on these comparisons é N V

Unexpected

stimulus
feature \

 EEENEEEEENES

* |.e., differences between predictions and stimuli drive
learning

Bottom-up
signals

I Dayan ... Zemel, Neur. Comp., 1995
2 _Rao & Ballard, Nat. Neur., 1999



1

2.

3.

Does the visual system implement a predictive
hierarchical model of the world?

Logical consequents of such predictive
hierarchical models:

. There should be distinct responses to
expected and unexpected stimuli

These responses should change with
experience

Top-down and bottom-up responses should
evolve differently due to hierarchical
structure

Unexpected responses should predict
how they evolve In time in indiv. neurons

\ EEENEEENEE
il
- gEEENEEEREN
L L
Pt TILT

_ L I EEEEEEEE 1
- EEEEEE

LS

am e tEEEEEREN

generative
biases
layer o
VooV y
3 O :k) @,
033 | | 632
2 0O00EWOOO
iti 12 |1 g2
ngglﬁtlsn ¥ , O eerergt
a N N N
1 00QOO0
input

Helmholtz machine sc:hematic1

L Dayan ... Zemel, Neur. Comp., 1995



Seed mouse with expectations and observe responses
to expectation violations over multiple days

Experimental timeline (in days)
H1 |[[H2|[H3 |[Ha ][ H5] [He |[H7 |[H8 | o |[H10][H11 1 --

Habituation to recording Habituation with expected Optical imaging
Top-down Brain surface
predictions Qﬁ

AR\ ALLEN INSTITUTE
W f I BRAIN SC | I‘ I\

rig without stimulus sequences (no U frames) with full stimulus
(incl. U frames) L 5

 Habituate mice to A-B-C-D
Gabor-patch sequences

* Then substitute ~8% of D frames

with unexpected U Gabor-patch
signals | frames (diff. positions and
orientations than D)

* Image 2-photon calcium activity

: '__;___: ;verS recording days L5_'§Ol11_a'|@
| S ~yql " egment gpd match.ROIs to
= : 7o follow activity over different days 1
= | (, # “ : e Distal apical dendrites (top-
e m = down signals) and somata !

(bottom-up signals)
* Error signals? Matching
signals?




(1) Are there distinct responses to expected and
unexpected stimul?

Example ROIs & USIs

L2/3-D L2/3-S
A B C DUG A B C DUG compare ea. ROI's USI to its null distro (shuffle
0.2 [USl 039 ' USl 048 P 0 - -f- ROI USI
: D/U labels and recalculate USI 1 X 10° times) Yo signi icant S
0 -GN m.."!:L . L
= 0.1 .
~ 0-1 7 (Usi=000] : (Ust =0.00] low (< 2.5 pct.) high (> 97.5™ pct.)
< 1 i e e [
; 0 USI Significance 40 ek
-0.1 - I >
0.2 - 0.5+ (UsI=-0.42] ! <250, b1 >o7.5m _}
[USI=-0.51] | ! _ , ! pet.
I I - |
o Mt LS S > |
-0.6 0 0.6 -0.6 0 0.6 % ' |
(mean £ SEM over trials Time (s) a N
0 i
-0.5 g
Unexpected event Selectivity Index
(measure of sensitivity to U frames)
HUG — UDG
USI = Take-home: Many more USls are sensitive (%) to
\/ % (U%G —+ U%)G) unexpected vs. expected events than predicted by chance,

demonstrating distinct responses



(2) Do they change with experience”?
(3) Do bottom-up and top-down representations

Top-down
predictions

Brain surface
O

Example mean ROI traces

L5-D L5-S
Bottom-up A B C BI—U G A B C 2/— G
signals 0.05 I . 0.4 :
/~- ’ I
I:/ 42\ L . m dayf
I | \ |
Od— — — — b — — - T~

AF/F across ROlIs

Difference in JAF/F between unexp.

(mean == SEM over ROlIs)

evolve differently?
T~

Evolution of mean
differences over days

L2/3- L5-D*
0.02 oo ******
x*x*x ‘ x*x*x
&
S N ‘H B
c 0 — K 3
)
-
(@)
()
L
g. L2/3-S wxw LD-S
()
2 0.04
N \
\
> -
1 2 3 1 2 3

Day

Take-home: Dendritic (top-down) responses increase with
experience over days, while somatic (bottom-up)
responses decrease



(4) Do the unexpected responses predict how they
evolve in time?

Individual ROI USI evolution

~
2 L2/3-D L5-D . L2/3-S
Examine correlation between N 0.1 Raw random
. 1 'US/S on 1 day and the change % 0;«;1 4s ' corr: -0.72
v in value on the next day = O 4 M b
N N’ Lo DA I A
2, ! g o,
5 0 g -0.1{ Raw corr: -0.95
m < -0-4 0 0-4 0-8
B -1 Day 1 USI
5 24 L2/3-S L5-S
0 ; i
= Normalized residual R - M
1 o correlation: -0.82 |L|
1. Shuffle day labels 1 X 10° 8 . : |
\\ 7 times for ROIs and - : 4;) : Median
— == recalculate each S
correlation, producing ‘g c% :
correlation distribution c 4 : Raw Raw
2. Calculate normalized resid. 8 j COrr correlation
corr. as shown : | null distr.
R

(each line corresponds to 1 tracked ROI) ,UU Q — ,uDG -1.0 -0.8 -0.6 -0.4
USl = \/ Raw correlation

% (U%G + 0123(;)



(4) Do the unexpected responses predict how they
pay 1v2  2v3 evolve in time?

N
== _i_ T L2/3'S
_____ ®_ | . ____F_
0 : 0.1 Raw random
e
- Taassd .. corr: -0.72
9 -0.2 T 0 %wf’f*% 5
c T T : S
o T:.’ g -0.1{ Raw corr: -0.95
S b L2/3- L5-D L2/3- L5-D p -0.4 0 0.4 0.8
g Y 04 ) Day 1 USI
- g *%k*%
2 T -t - __J]1 _
8 0 Normalized residual R -V
- correlation: -0.82 |L|
8 L i Median

<€ > |

-0.8 | /3.5 L5-S L2/3-S L5-S
Raw
correlation
null distr.

Density

Take-homes:
 Somatic USIs decrease as a function of their
USIs (statistically significantly) from day 1 to 2,
consistent with a reduction in error.
« Dendrittic USIs increase as a function of their USI =

. T 1 2 2
USlIs (statistically significantly) from day 2 to 3, \/§ (UUG + UDG)
becoming more sensitive to unexpected stimuli

HUG — UDG -1.0 -0.8 -0.6 -0.4
Raw correlation




Predictive Hierarchical
Network Summary

1. Violations of expectation are observable in neural
activity in very early layers (predictions)

2. The sensitivity to violations changes over days
(learning of novel stimuli)

3. Bottom-up and top-down signals evolve differently
(hierarchical learning model)

4. Furthermore, the sensitivities specifically guide the
evolution of responses in individual neurons (specific
differences in responses may drive learning)

* Qverall, visual cortex may instantiate a predictive
hierarchical model that is updated as a result of
unexpected events

Top-down
predictions

Experience

>

Bottom-up
signals

Unexpected event selectivity scale

- Null (0)

Low (-)
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